Advertisement

Better Approximation of Diagonal-Flip Transformation and Rotation Transformation

Extended Abstract
  • Ming Li
  • Louxin Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1449)

Abstract

Approximation algorithms are developed for the diagonal- flip transformation of convex polygon triangulations and equivalently rotation transformation of binary trees. For two arbitrary triangulations in which each vertex is an end of at most d diagonals, Algorithm A has the approximation ratio \( 2 - \frac{2} {{4(d - 1)(d + 6) + 1}}. \) For triangulations containing no internal triangles, Algorithm B has the approximation ratio 1.97. Two self-interesting lower bounds on the diagonal-flip distance are also established in the analyses of these two algorithms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Aldous, Triangulating the circle, at random. Amer Math. Monthly 89(1994), 223–234.CrossRefMathSciNetGoogle Scholar
  2. 2.
    B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp and L. Zhang, On distance between phylogenetic trees. Proc. of the SIAM-ACM 8th Annual Symposium on Discrete Algorithms, 427–436, 1997.Google Scholar
  3. 3.
    K. Culik and D. Wood, A note on some tree similarity measures, Information Processing Letters 15(1982), 39–42.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    J.-Y. Cai and M. D. Hirsch, Rotation distance, triangulation of planar surfaces and hyperbolic geometry, Proceeding of the 5th Inter. Symposium on Algorithm and Computation, Lecture Notes in Computer Science, vol. 834, 172–180, 1994.Google Scholar
  5. 5.
    A. K. Dewdney, Wagner’s theorem for torus graphs, Discrete Math. 4(1973), 139–149.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    L. Guibas and J. Hershberger, Morphing simple polygons, Proceeding of the ACM 10th Annual Sym. of Comput. Geometry, 267–276, 1994.Google Scholar
  7. 7.
    S. Hanke, T. Ottmann and S. Schuierer, The edge-flipping distance of triangulations. Proc. of the European Workshop of Comput. Geometry, 1996. Technical Report 76, Insttut fur Informatik, Universitat Freiburg, 1996.Google Scholar
  8. 8.
    J. Hershberger and S. Suri, Morphing binary trees. Proceeding of the ACM-SIAM 6th Annual Symposium of Discrete Algorithms, 396–404, 1995.Google Scholar
  9. 9.
    F. Hurtado, M. Noy, and J. Urrutia, Flipping edges in triangulations, Proc. of the ACM 12th Annual Sym. of Comput. Geometry, 214–223, 1996.Google Scholar
  10. 10.
    D. Knuth, The art of computer programming, Vol. 3: Sorting and Searching, Addison-Wesley, Reading, MA, 1973.Google Scholar
  11. 11.
    D. Knuth, Computer Musings (Videotape): The associative law, or the anatomy of rotations in binary trees, University Video Communications, 1993.Google Scholar
  12. 12.
    J. Pallo, On rotation distance in the lattice of binary trees, Infor. Proc. Letters 25(1987), 369–373.CrossRefMathSciNetGoogle Scholar
  13. 13.
    D. D. Sleator and R. Tarjan, Self-adjusting binary search trees, J. Assoc. Comput. Mach. 32(1985), 652–686.zbMATHMathSciNetGoogle Scholar
  14. 14.
    D. D. Sleator, R. Tarjan and W. Thurston, Rotation distance, in T.M. Cover and B. Gopinath eds, Open problems in communication and computation, Springer-Verlag, 1987.Google Scholar
  15. 15.
    D. D. Sleator, R. Tarjan and W. Thurston, Rotation distance, triangulations, and hyperbolic geometry, Proc. of the 18th Annual ACM Symposium on Theory of Comput., Berkeley, CA., 122–135, 1986. Also appearing on J. of American Math. Soc. 1(1988), No. 3, 647 — 681.Google Scholar
  16. 16.
    D. D. Sleator, R. Tarjan and W. Thurston, Short encoding of evolving structures, SIAM J. Disc. Math. 5(1992), 428–450.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    D. Swofford, G. J. Olsen, P. J. Waddell and D. M. Hillis, Phylogenetic Inference, In Molecular Systematics, 2nd Edition, edited by D. M. Hillis, C. Moritz and B. K. Mable, Sinauer Associates, Mass., 1996.Google Scholar
  18. 18.
    R. E. Tarjan, Data structures and network algorithms, Soc. Indus. Appl. Math., Philadelphia, PA. 1983.Google Scholar
  19. 19.
    K. Wagner, Bemerkungen zum vierfarbenproblem, J. Deutschen Math.-Verin. 46(1936), 26–32.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Ming Li
    • 1
  • Louxin Zhang
    • 2
    • 3
  1. 1.Department of Computer ScienceUniversity of WaterlooCanada
  2. 2.BioInformatics CenterNUSSingapore
  3. 3.Kent Ridge Digital LabsSingapore

Personalised recommendations