Skip to main content

Packing and Molecular Conformation, and Their Relationship with LC Phase Behaviour

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 94))

Abstract

Current studies of thermotropic liquid crystals reveal a remarkable variety of smectic phases, distinguished by their molecular packing, symmetry of one and two-dimensional lattices and tilting. We review here the structure and phase behaviour of particular types of layering with emphasis on their relationship to asymmetry of the molecular structure and conformational mobility of different molecular moieties. The breaking of up-down symmetry in the orientation of the heads (tails) of molecules is considered as having either a steric or polar origin, or as induced by the polyphilic nature of molecules. The structure of tilted smectic phases and phases with alternating layer to layer tilt are discussed in detail. We consider also the possibility of transitions from the phases with one-dimensional periodicity (smectics) to columnar phases with two-dimensional positional order. The relevance of various types of molecular model that predict the regions of stability of different layered phases are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For some recent reviews, see: (a) De Jeu WH (1992) In: Martelucci S, Chester AN (eds) Phase transitions in liquid crystals. Plenum Press, New York, chaps 1–3

    Google Scholar 

  2. Osipov MA (1998) In: Goodby J, Demus D (eds) Handbook of liquid crystals, 2nd edn, Wiley-VCH, Berlin

    Google Scholar 

  3. Maier W, Saupe A (1959) Z Naturforschg 14a: 882; Maier W, Saupe A (1960) 15a: 287

    CAS  Google Scholar 

  4. Pohl L, Eidenschink R, Krause J, Weber G (1978) Phys Lett A 65: 169

    Google Scholar 

  5. Demus D, Demus H, Zaschke H (1983) Flüssige Kristalle in Tabellen, 2nd edn. VEB Verlag, Leipzig

    Google Scholar 

  6. Frenkel D, Mulder BM (1985) Mol Phys 55: 1171

    CAS  Google Scholar 

  7. Veerman JAC, Frenkel D (1990) Phys Rev A 41: 3237

    CAS  Google Scholar 

  8. Poniwierski A, Sluckin TJ (1991) Phys Rev A 43: 6837

    Google Scholar 

  9. Somoza AM, Tarazona P (1990) Phys Rev A 41: 965

    Google Scholar 

  10. Gelbart WM, Gelbart A (1977) Mol Phys 33: 1387

    CAS  Google Scholar 

  11. McMillan WL (1971) Phys Rev A 4: 1238; McMillan WL (1972) 6: 936

    Google Scholar 

  12. Kobayashi K (1970) J Phys Soc Japan 29: 101

    Google Scholar 

  13. See, for example, Wojtowicz PI (1979) In: Priestley PY, Wojtowicz PI, Sheng P (eds) Introduction to liquid crystals. Plenum Press, New York, chap 7 and references cited therein

    Google Scholar 

  14. Hardouin F, Levelut AM, Achard MF, Sigaud G (1983) J Chim Phys 80: 53 and references cited therein

    CAS  Google Scholar 

  15. Shashidhar R, Ratna BR (1989) Liq Cryst 5: 421 and references cited therein

    Google Scholar 

  16. Ostrovskii BI (1993) Liq Cryst 14: 131 and references cited therein

    CAS  Google Scholar 

  17. Stroobants A, Lekkerkerker HNV, Frenkel D (1986) Phys Rev Lett 57: 1452

    Google Scholar 

  18. Stroobants A, Lekkerkerker HNV, Frenkel D (1987) Phys Rev A 36: 2929

    CAS  Google Scholar 

  19. Frenkel D (1988) J Phys Chem 92: 3280

    CAS  Google Scholar 

  20. Mulder BM (1987) Phys Rev A 35: 3095

    Google Scholar 

  21. Poniewierski A, Holyst R (1988) Phys Rev Lett 61: 2461

    Google Scholar 

  22. Somoza AM, Tarazona P (1990) Phys Rev A 41: 965

    Google Scholar 

  23. Mederos L, Sullivan DE (1989) Phys Rev A 39: 854

    CAS  Google Scholar 

  24. Luckhurst GR, Stephens RA, Phippen RW (1990) Liq Cryst 8: 451

    CAS  Google Scholar 

  25. Luckhurst GR, Simmonds PSJ (1993) Mol Phys 80: 233

    CAS  Google Scholar 

  26. Malthete J, Levelut AM, Tinh NH (1985) J Phys Lett 46: 875

    CAS  Google Scholar 

  27. Tinh NH, Destrade C, Levelut AM, Malthete J (1986) J Phys 47: 553

    Google Scholar 

  28. Diele S, Ziebarth K, Pelzl G, Demus D, Weissflog W (1990) Liq Cryst 8: 211

    CAS  Google Scholar 

  29. Demus D (1989) Liq Cryst 5: 75

    CAS  Google Scholar 

  30. Attard GS, Garnett S, Hickman CC, Imrie CT, Taylor L (1990) Liq Cryst 7: 495

    CAS  Google Scholar 

  31. Shibaev VP, Lam L (eds) (1994) Liquid crystalline and mesomorphic polymers. Springer, Berlin Heidelberg New York

    Google Scholar 

  32. See, for example, Emsley JW (ed) (1985) Nuclear magnetic resonance in liquid crystals. Reidel, Dordrecht

    Google Scholar 

  33. Poldy F, Dvolaitsky M, Taupin C (1975) J Phys Coll Cl 36: 27

    Google Scholar 

  34. Charvolin J, Deloche B (1979) In: Luckhurst GR, Gray GW (eds) The molecular physics of liquid crystals. Academic Press, London, chap 15

    Google Scholar 

  35. Luckhurst GR (1985) In: Chapoy LL (ed) Recent advances in liquid crystalline polymers. Elsevier, London, p105

    Google Scholar 

  36. Marcelja S (1974) J Chem Phys 60: 3599

    CAS  Google Scholar 

  37. Samulski ET, Toriumi H (1983) J Chem Phys 79: 5194

    CAS  Google Scholar 

  38. Janik B, Samulski ET, Toriumi H (1987) J Phys Chem 91: 1842

    CAS  Google Scholar 

  39. Emsley JW, Luckhurst GR, Stockley CP (1982) Proc R Soc London A381: 117

    Google Scholar 

  40. Dowell F (1987) Phys Rev A 36: 5046

    CAS  Google Scholar 

  41. Dowell F (1988) Phys Rev A 38: 382

    CAS  Google Scholar 

  42. Cladis P (1975) Phys Rev Lett 35: 48

    CAS  Google Scholar 

  43. Cladis PE, Bogardus RK, Aadsen D (1978) Phys Rev A 18: 2292

    CAS  Google Scholar 

  44. Tokita K, Fujimura K, Kondo S, Takeda M (1981) Mol Cryst Liq Cryst Lett 64: 171

    CAS  Google Scholar 

  45. Indekeu JO, Berker AN (1986) Phys Rev A 33: 1158

    CAS  Google Scholar 

  46. Indekeu JO, Berker AN (1986) Physica A 140: 368

    Google Scholar 

  47. Netz RR, Berker AN (1992) Phys Rev Lett 68: 333

    CAS  Google Scholar 

  48. Osman MA (1983) Z Naturf (a) 38: 693

    Google Scholar 

  49. De Jeu WH (1983) Phil Trans R Soc A 309: 217

    Google Scholar 

  50. Petrov AG, Derzhanski A (1987) Mol Cryst Liq Cryst 151: 303

    CAS  Google Scholar 

  51. Meyer RB (1969) Phys Rev Lett 22: 918

    CAS  Google Scholar 

  52. Osipov MA (1984) Ferroelectrics 58: 305

    CAS  Google Scholar 

  53. Lobko TA, Ostrovskii BI, Pavluchenko AI, Sulianov SN (1993) Liq Cryst 15: 361

    CAS  Google Scholar 

  54. Diele S, Lose D, Kruth H, Pelzl G, Guittard F, Cambon A (1996) Liq Cryst 21: 603

    CAS  Google Scholar 

  55. Pelzl G, Latif I, Diele S Novak M, Demus D, Sackmann H (1986) Mol Cryst Liq Cryst 139: 333

    CAS  Google Scholar 

  56. Goring P, Pelzl G, Diele S, Delavier P, Siemensmayer K, Etzbach KH (1995) Liq Cryst 19: 629

    Google Scholar 

  57. Lose D, Diele S, Pelzl G, Dietzmann E, Weissflog W, Liq Cryst (to be published)

    Google Scholar 

  58. Dietzmann E, Weissflog W, Markscheffel S, Jakli A, Lose D, Diele S (1996) Ferroelectrics 180: 59

    Google Scholar 

  59. Pelzl G, Diele S, Lose D, Ostrovskii BI, Weissflog W (1997) Cryst Res Techn 32: 99

    CAS  Google Scholar 

  60. Hardouin F, Achard MF, Jin J-I, Shin J-W, Yun Y-K (1994) J Phys 4: 627

    CAS  Google Scholar 

  61. Hardouin F, Achard MF, Jin J-I, Yun Y-K (1995) J Phys 5: 927

    CAS  Google Scholar 

  62. See, for example, (a) Leadbetter AJ (1979) In: Luckhurst GR, Gray GW (eds) The molecular physics of liquid crystals. Academic Press, London, chap 13

    Google Scholar 

  63. Pershan PS (1988) Structure of liquid crystalline phases. World Scientific, Singapore

    Google Scholar 

  64. Ostrovskii BI (1989) Sov Sci Rev Sec A 12(2): 86

    Google Scholar 

  65. Shashidhar R (1992) In: Martelucci S, Chester AN (eds) Phase transitions in liquid crystals. Plenum Press, New York, chaps 15, 16

    Google Scholar 

  66. Blinov LM, Lobko TA, Ostrovskii BI, Sulianov SN, Tournilchac FG (1993) J Phys II 3: 1121

    CAS  Google Scholar 

  67. Ostrovskii BI, Tournilchac FG, Blinov LM, Haase W (1995) J Phys II 5: 979

    CAS  Google Scholar 

  68. Fontes E, Heiney PA, Haseltine JL, Smith AB (1986) J Phys 47: 1553

    Google Scholar 

  69. Lobko TA, Ostrovskii BI, Haase W (1992) J Phys II 2: 1195

    CAS  Google Scholar 

  70. Gramsbergen EF, de Jeu WH (1989) Liq Cryst 4: 449

    CAS  Google Scholar 

  71. Leadbetter AJ, Norris EK (1979) Molec Phys 38: 669. There are different contributions which give rise to a broadening σ of the molecular centre of mass distribution function f(z). The most important are the long-wave layer displacement thermal fluctuations and the individual motions of molecules having a random diffusive nature. The layer displacement amplitude depends on the magnitude of the elastic constants of smectics: σ2~(KB) -1/2, where B and K are the elastic constants for compression of the layers and for splay deformation, respectively

    CAS  Google Scholar 

  72. Kirov N, Simova P (1984) Vibrational spectroscopy of liquid crystals. Bulgar Acad Sci, Sofia

    Google Scholar 

  73. Blinov LM (1983) Electro-optical and magneto-optical properties of liquid crystals. Wiley, Chichester

    Google Scholar 

  74. Aver’yanov AM, Adomenas PV, Zhuikov VA, Zyryanov VYa (1986) Zh Eksp Teor Fiz 91: 552

    CAS  Google Scholar 

  75. Kocot A, Kruk G, Wrzalic R, Vij JK (1992) Liq Cryst 12: 1005

    CAS  Google Scholar 

  76. Kim KH, Ishikawa K, Takezoe H, Fukuda A (1995) Phys Rev E 51: 2166

    CAS  Google Scholar 

  77. Blinov LM, Tournilhac F (1993) Mol Mats 3: 93

    CAS  Google Scholar 

  78. Blinov LM, Tournilhac F (1993) 3: 169

    Google Scholar 

  79. Prost J, Barois P (1983) J Chim Phys 80: 65

    CAS  Google Scholar 

  80. Barois P, Prost J, Pommier J (1992) In: Lam L, Prost J (eds) Solitons in liquid crystals. Springer, Berlin Heidelberg New York, chap 6

    Google Scholar 

  81. See, for example, (a) Toulouse G (1977) Communs Phys 2: 115

    CAS  Google Scholar 

  82. Janssen T, Janner A (1987) Adv Phys 36: 519

    CAS  Google Scholar 

  83. Blinc R, Levanyuk AP (eds) (1986) Incommensurate phases in dielectrics. Elsevier

    Google Scholar 

  84. Cladis PE (1988) Mol Cryst Liq Cryst 165: 85

    CAS  Google Scholar 

  85. Longa L, de Jeu WH (1983) Phys Rev A 28: 2380

    CAS  Google Scholar 

  86. Helfrich W (1987) J Phys 48: 291

    CAS  Google Scholar 

  87. Tinh NH, Hardouin H, Destrade C (1982) J Phys 43: 1127

    Google Scholar 

  88. Shashidhar R, Ratna BR, Surendranath V, Raja VN, Krishna Prasad S, Nagabhusan C (1985) J Phys Lett 46: 445

    CAS  Google Scholar 

  89. Prost J, Toner J (1987) Phys Rev A 36: 5008

    Google Scholar 

  90. Cladis PE, Brand HR (1984) Phys Rev Lett 52: 2261

    CAS  Google Scholar 

  91. Hardouin F, Achard MF, Tinh NH, Sigaud G (1986) Mol Cryst Liq Cryst Lett 3: 7

    CAS  Google Scholar 

  92. Kumar S, Chen L, Surendranath V (1991) Phys Rev Lett 67: 322

    CAS  Google Scholar 

  93. Patel P, Chen L, Kumar S (1993) Phys Rev E 47: 2643

    CAS  Google Scholar 

  94. Brownsey GJ, Leadbetter AJ (1980) Phys Rev Lett 44: 1608

    CAS  Google Scholar 

  95. Mang JT, Cull B, Shi Y, Patel P, Kumar S (1995) Phys Rev Lett 74: 4241

    CAS  Google Scholar 

  96. Diele S, Pelzl G, Weissflog W, Demus D (1988) Liq Cryst 3: 1047

    CAS  Google Scholar 

  97. Diele S, Manke S, Weissflog W, Demus D (1989) Liq Cryst 6: 301

    Google Scholar 

  98. Diele S, Roth K, Demus D (1986) Cryst Res Techn 21: 97

    CAS  Google Scholar 

  99. Weissflog W, Demus D, Diele S, Nitschke P, Wedler W (1989) Liq Cryst 5: 111 and references therein

    CAS  Google Scholar 

  100. Davidson P, Keller P, Levelut AM (1985) J Phys 46: 939

    CAS  Google Scholar 

  101. Endres BW, Ebert M, Wendorff JH, Reck B, Ringsdorf H (1990) Liq Cryst 7: 217

    CAS  Google Scholar 

  102. Watanabe J, Nakata Y, Simizu K (1994) J Phys 4: 551

    Google Scholar 

  103. Nakata Y, Watanabe J (1997) Pol Journ 29: 193

    CAS  Google Scholar 

  104. Longa L, de Jeu WH (1983) Phys Rev A 26: 1632

    Google Scholar 

  105. Luckhurst GR, Timimi BA (1981) Mol Cryst Liq Cryst 64: 253

    CAS  Google Scholar 

  106. Guillon D, Scoulios A (1984) J Phys 45: 607

    CAS  Google Scholar 

  107. Madhusudana NV, Rajan J (1990) Liq Cryst 7: 31

    CAS  Google Scholar 

  108. Flory PJ (1969) Statistical mechanics of chain molecules. Wiley, London

    Google Scholar 

  109. Guillon D, Poeti G, Scoulios A, Fanelli E (1983) J Phys Lett 44: 491

    CAS  Google Scholar 

  110. See, for example, Bates FS, Fredrickson GH (1990) Ann Rev Phys Chem 41: 525

    Google Scholar 

  111. Diele S, Oelsner S, Kuschel F, Hisgen B, Ringsdorf H (1988) Mol Cryst Liq Cryst 155: 393

    Google Scholar 

  112. Tournilhac F, Bosio L, Nicoid GF, Simon J (1988) Chem Phys Lett 145: 452

    CAS  Google Scholar 

  113. Tournilhac F, Simon J (1991) Ferroelectrics 114: 283

    CAS  Google Scholar 

  114. Sigaud G, Nguyen HT, Achard MF, Twieg RJ (1990) Phys Rev Lett 65: 2796 and references cited therein. We note that alkyl and fluoroalkyl groups are nonpolar and interact primarily via dispersion (Van der Waals) forces: VfhfαH. Thus the incompatibility of these fragments are due to differences in their polarizabilities αF and αH. However, for dense fluids the effects of packing entropy may also be important

    Google Scholar 

  115. Tournilhac F, Blinov LM, Simon J, Yablonsky SV (1992) Nature 359: 621

    CAS  Google Scholar 

  116. Prost J, Bruinsma R, Tournilhac F (1994) J. Phys. II France 4: 169

    CAS  Google Scholar 

  117. Petschek RG, Wiefling KM (1987) Phys Rev Lett 59: 343

    CAS  Google Scholar 

  118. Perchak DR, Petschek RG (1991) Phys Rev A 43: 6756

    Google Scholar 

  119. Titov VV, Zverkova TI, Kovshov EI, Fialkov YuN, Shelazhenko SV, Yagupolski LM (1978) Mol Cryst Liq Cryst 47: 1

    CAS  Google Scholar 

  120. Ivashcenko AV, Kovshov EI, Lazareva E, Prudnikova K, Titov VV, Zverkova TI, Barnik MI, Yagupolski LM (1981) Mol Cryst Liq Cryst 67: 235

    Google Scholar 

  121. Koden M, Nakagawa K, Ishii, Y, Funada F, Matsumura M, Awane K (1989) Mol Cryst Liq Cryst Lett 6: 185

    CAS  Google Scholar 

  122. Nguyen HT, Sigaud G, Achard MF, Hardouin F, Twieg RJ, Betterton K (1991) Liq Cryst 10: 389

    Google Scholar 

  123. Janulis EP, Novack JC, Papapolymerou GA, TristanKendra M, Huffman WA (1988) Ferroelectrics 85: 375

    Google Scholar 

  124. Doi T, Sakurai Y, Tamatani A, Takenaka S, Kusabayashi S, Nishihata Y, Terauchi H (1991) J Mater Chem 1: 169

    CAS  Google Scholar 

  125. Diele S (1993) Ber Bunsenges Phys Chem 97: 1326

    CAS  Google Scholar 

  126. Kaganer VM, Diele S, Ostrovskii BI, Haase W (1997) Mol Mats 9: 59

    CAS  Google Scholar 

  127. Stoebe T, Mach P, Huang CC (1994) Phys Rev Lett 73: 1384

    CAS  Google Scholar 

  128. Johnson PM, Mach P, Wedell ED, Lintgen F, Neubert M, Huang CC (1997) Phys Rev E 55: 4386

    CAS  Google Scholar 

  129. Pang J, Clark NA (1994) Phys Rev Lett 73: 2332

    CAS  Google Scholar 

  130. Shindler JD, Mol EAL, Shalaginov A, de Jeu WH (1995) Phys Rev Lett 74: 722

    CAS  Google Scholar 

  131. Rieker TP, Janulis EP (1994) Liq Cryst 17: 681

    CAS  Google Scholar 

  132. Rieker TP, Janulis EP (1995) Phys Rev E 52: 2688

    CAS  Google Scholar 

  133. Sereda SV, Antipin Mu, Timofeeva TV, Struchkov YuT, Shelazhenko SV (1987) Kristallografiya 32: 352

    CAS  Google Scholar 

  134. Kromm P, Cotrait M, Roullon JC, Barois P, Nguyen HT (1997) Liq Cryst 21: 121

    Google Scholar 

  135. Pavluchenko AI, Smirnova NI, Petrov VF, Fialkov YuN, Shelazhenko SV, Yagupolski LM (1991) Mol Cryst Liq Cryst 209: 225

    CAS  Google Scholar 

  136. Stoebe T, Mach P, Grantz S, Huang CC (1996) Phys Rev E 53: 1662. In this work the surface tension of the free standing films of some perfluorinated compounds has been measured. The intermediate value of the surface tension (≈14 dyn/cm) between that of pure close-packed CF3 and CH3 groups indicates that the surface of the film consist of nearly equal proportions of these fragments

    CAS  Google Scholar 

  137. Rabolt JF, Russel TP, Twieg RJ (1984) Macromolecules 17: 2786

    CAS  Google Scholar 

  138. Viney C, Twieg RJ, Russel TP, Depero LE (1989) Liq Cryst 5: 1783

    Google Scholar 

  139. Hopken J, Moler M (1992) Macromolecules 25: 2482

    CAS  Google Scholar 

  140. See, for example, Kissa E (1994) Fluorinated surfactants. M Dekker, New York

    Google Scholar 

  141. Mahler W, Guillon D, Scoulios A (1985) Mol Cryst Liq Cryst Lett 2: 111

    CAS  Google Scholar 

  142. Shin S, Collazo N, Rice SA (1992) J Chem Phys 96: 1352

    CAS  Google Scholar 

  143. Levelut AM (1983) J Chim Phys 80: 149

    CAS  Google Scholar 

  144. Fontes E, Heiney PA, Ohba M, Haseltine JN, Smith AB (1988) Phys Rev A 37: 1329

    CAS  Google Scholar 

  145. Tournilhac F, Kumar S, private communication

    Google Scholar 

  146. Goodby JW, Waugh MA, Stein SM, Chin E, Pindak R, Patel JS (1989) J Am Chem Soc 111: 8119

    CAS  Google Scholar 

  147. Ibn Elhaj M, Coles HJ, Guillon D, Scoulios A (1993) J Phys II 3: 1807

    CAS  Google Scholar 

  148. Bartolino R, Doucet J, Durand G (1978) Ann Phys (Paris) 3: 389

    CAS  Google Scholar 

  149. Keller EN, Nachaliel E, Davidov D, Boffel Ch (1986) Phys Rev A 34: 4363

    CAS  Google Scholar 

  150. McMillan WL (1973) Phys Rev A 8: 1921

    CAS  Google Scholar 

  151. Van der Meer BW, Vertagen G (1979) J Phys Coll C3 40: 222

    Google Scholar 

  152. Cabib D, Benguigui L (1977) J Phys 38: 419

    CAS  Google Scholar 

  153. Goossens WJA (1985) J Phys 46: 1411

    CAS  Google Scholar 

  154. Wulf A (1975) Phys Rev A 11: 365

    CAS  Google Scholar 

  155. Sirota EB (1988) J Phys 49: 1443

    CAS  Google Scholar 

  156. The experimental data, especially for ferroelectric chiral systems, show that in tilted phases the molecules are still rotating around their long axis, though there are some steric hindrance; see, for example, Fukuda A, Takanishi Y, Isozaki T, Ishikava K, Takezoe H (1994) J Mater Chem 4: 997 and references cited therein

    CAS  Google Scholar 

  157. de Jeu WH (1977) J Phys France 38: 1265 and references cited therein

    Google Scholar 

  158. Barbero G, Durand G (1990) Mol Cryst Liq Cryst 179: 157

    Google Scholar 

  159. Poniewierski A, Sluckin TJ (1991) Mol Phys 73: 199

    CAS  Google Scholar 

  160. Velasko E, Mederos L, Sluckin TJ (1996) Liq Cryst 20: 399

    Google Scholar 

  161. Glaser MA, Malzbender R, Clark NA, Walba DM (1994) J Phys Condens Matt A 6: 261

    Google Scholar 

  162. Glaser MA, Malzbender R, Clark NA, Walba DM (1995) Mol Sim 14: 343

    CAS  Google Scholar 

  163. Weissflog W, Pelzl G, Wiegeleben A, Demus D (1980) Mol Cryst Liq Cryst Lett 56: 295

    CAS  Google Scholar 

  164. Tinh NH, Hardouin F, Deastrade C, Levelut AM (1982) J Phys Lett 43: 33

    Google Scholar 

  165. Swager TM, Serrette AG, Knawby DM, Zheng H (1994) 15 ILCC, Budapest, Abstracts, 2: 771

    Google Scholar 

  166. Xu B, Swager TM (1995) J Am Chem Soc 117: 5011

    CAS  Google Scholar 

  167. Niori T, Sekine T, Watanabe J, Furukawa T, Takezoe H (1996) J Mater Chem 6: 1231

    CAS  Google Scholar 

  168. Goodby JW, Clark NA, Lagerwall S, Osipov MA, Pikin SA (eds) (1991) Ferroelectric liquid crystals. Gordon and Breach, Philadelphia

    Google Scholar 

  169. Meyer RB, Liebert L, Strzelecki L, Keller P (1975) J Phys Lett 36: 69

    Google Scholar 

  170. Hiji N, Chandani ADL, Nishiyama S, Ouchi Y, Takezoe H, Fukuda A (1988) Ferroelectrics 85: 99

    Google Scholar 

  171. Lin Lei (1987) Mol Cryst Liq Cryst 146: 41

    CAS  Google Scholar 

  172. Pallfy-Muhoray P, Lee MA, Petschek RG (1988) Phys Rev Lett 60: 2303

    Google Scholar 

  173. Biscarini F, Zannoni C, Chiccoli C, Pasini P (1991) Mol Phys 73: 439

    CAS  Google Scholar 

  174. Weis JJ, Levesque D, Zarragoicoechea GJ (1992) Phys Rev Lett 69: 913

    Google Scholar 

  175. Ayton G, Wei DQ, Patey GN Phys Rev E 55: 447

    Google Scholar 

  176. Levesque D, Weis JJ, Zarragoicoechea GJ (1993) Phys Rev E 47: 496

    Google Scholar 

  177. Link DR, Natale G, Shao R, Maclennan JE, Clark NA, Korblova E, Walba DM (1997) Science 278: 1924

    CAS  Google Scholar 

  178. Brand HR, Cladis P, Pleiner H (1992) Macromolecules 25: 7223

    CAS  Google Scholar 

  179. Cladis P, Brand HR (1993) Liq Cryst 14: 1327

    CAS  Google Scholar 

  180. Beresnev LA, Blinov LM, Baikalov VA, Pozhidayev EP, Purvanetskas GV, Pavluchenko AI (1982) Mol Cryst Liq Cryst 89: 327

    CAS  Google Scholar 

  181. Levelut AM, Germain C, Keller P, Liebert L, Billard J (1983), J Phys 44: 623

    CAS  Google Scholar 

  182. Watanabe J, Hayashi M (1989) Macromolecules 22: 4083

    CAS  Google Scholar 

  183. Galerne Y, Liebert L (1990) Phys Rev Lett 64: 906

    CAS  Google Scholar 

  184. Nishiyama I, Goodby JW (1992) J Mater Chem 2: 1015

    CAS  Google Scholar 

  185. Heppke G, Kleinberg P, Lotzsch D (1993) Liq Cryst 14: 67

    CAS  Google Scholar 

  186. Soto Bustamante EA, Yablonskii SV, Ostrovskii BI, Beresnev LA, Blinov LM, Haase W (1996) Chem Phys Lett 260: 447

    CAS  Google Scholar 

  187. Soto Bustamante EA, Yablonskii SV, Ostrovskii BI, Beresnev LA, Blinov LM, Haase W (1996) Liq Cryst 21: 829

    Google Scholar 

  188. Ostrovskii BI, Soto Bustamante EA, Sulyanov SN, Galyametdinov YuG, Haase W (1996) Mol Mats 6: 171

    CAS  Google Scholar 

  189. Chandrasekhar S, Shadashiva BK, Suresh KA (1977) Pramana 9: 471

    CAS  Google Scholar 

  190. Guillon D, Skoulios A, Malthete J (1987) Europhys Lett 3: 67

    CAS  Google Scholar 

  191. Hendrikx Y, Levelut AM (1988) Mol Cryst Liq Cryst 165: 233

    CAS  Google Scholar 

  192. Letko I, Diele S, Pelzl G, Weissflog W (1995) Liq Cryst 19: 643

    CAS  Google Scholar 

  193. Letko I, Diele S, Pelzl G, Weissflog W (1995) Mol Cryst Liq Cryst 260: 171

    CAS  Google Scholar 

  194. Kats EI, Lebedev VV, Muratov AR (1989) Physica A 160: 98

    Google Scholar 

  195. Podneks VE, Hamley IW (1996) Pis’ma v ZhETF 64: 564

    CAS  Google Scholar 

  196. Charvolin J (1989) In: Riste T, Sherrington D (eds) Phase transitions in soft condensed matter. Plenum Press, New York, p95

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ostrovskii, B.I. (1999). Packing and Molecular Conformation, and Their Relationship with LC Phase Behaviour. In: Mingos, D.M.P. (eds) Liquid Crystals I. Structure and Bonding, vol 94. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-68305-4_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-68305-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64936-6

  • Online ISBN: 978-3-540-68305-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics