Skip to main content

Tunneling in Open Systems: Dynamics

  • Chapter
Quantum Tunneling in Complex Systems

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 224))

  • 1099 Accesses

Abstract

The dynamics of quantum dissipative systems displays a fascinating variety of phenomena approaching for deep temperatures and weak friction the pure quantum mechanical domain and for high temperatures the realm of classical physics. Accordingly, a theoretical description has been a formidable task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Blum. Density Matrix Theory and Applications. Plenum Press, 1981.

    Google Scholar 

  2. H.P. Breuer and F. Petruccione. The Theory of Open Quantum Systems. Oxford University Press, 2002.

    Google Scholar 

  3. R.K. Wangsness and F. Bloch. Phys. Rev., 89:728, 1953.

    Article  MATH  ADS  Google Scholar 

  4. A.G. Redfield. IBM J. Res. Develop., 1:19, 1957.

    Article  Google Scholar 

  5. C.W. Gardiner. Quantum Noise. Springer, 1991.

    Google Scholar 

  6. M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.

    Google Scholar 

  7. R.P. Feynman and F.L. Vernon. Ann. Phys. (N.Y.), 243:118, 1963.

    Article  ADS  MathSciNet  Google Scholar 

  8. A.O. Caldeira and A.J. Leggett. Phys. Rev. Lett., 46:211, 1981.

    Article  ADS  Google Scholar 

  9. H. Grabert, P. Schramm, and G.-L. Ingold. Phys. Rep., 168:115, 1988.

    Article  ADS  MathSciNet  Google Scholar 

  10. U. Weiss. Quantum Dissipative Systems. World Scientific, 1999.

    Google Scholar 

  11. J. Ankerhold and E. Pollak, editors. Real-time Dynamics in Complex Quantum Systems, volume 322 of Chemical Physics, 2006.

    Google Scholar 

  12. R. Karrlein and H. Grabert. Phys. Rev. E, 55:153, 1997.

    Article  ADS  Google Scholar 

  13. P. Hänggi and G.L. Ingold. Chaos, 15:026105, 2005.

    Article  MathSciNet  ADS  Google Scholar 

  14. H. Grabert. Chem. Phys., 322:160, 2006.

    Article  ADS  Google Scholar 

  15. I.M. Gelfand and A.M. Yaglom. J. Math. Phys., 1:48, 1959.

    Article  ADS  Google Scholar 

  16. R. P. Feynman and A. P. Hibbs. Quantum Mechanics and Path Integrals. McGraw-Hill, 1965.

    Google Scholar 

  17. P. Hänggi. Lect. Notes Phys., 484:15, 1997.

    Article  ADS  Google Scholar 

  18. A. Schmid. Ann. Phys. (NY), 170:333, 1986.

    Article  ADS  Google Scholar 

  19. J. Ankerhold, H. Grabert, and G.L. Ingold. Phys. Rev. E, 51:4267, 1995.

    Article  ADS  Google Scholar 

  20. J. Ankerhold and H. Grabert. Chem. Phys., 204:27, 1996.

    Article  Google Scholar 

  21. H. Hofmann and G.-L. Ingold. Phys. Lett. B, 264:253, 1991.

    Article  ADS  Google Scholar 

  22. J. Ankerhold, F. Grossmann, and D.J. Tannor. Phys. Chem. Chem. Phys., 1:1333, 1999.

    Article  Google Scholar 

  23. Y. Tanimura and P.G. Wolynes. J. Chem. Phys., 96:8485, 1992.

    Article  ADS  Google Scholar 

  24. J. Ankerhold and H. Grabert. Physica A, 188:568, 1992.

    Article  ADS  Google Scholar 

  25. J. Ankerhold and H. Grabert. Phys. Rev. E, 52:4704, 1995.

    Article  ADS  Google Scholar 

  26. J. Ankerhold and H. Grabert. Phys. Rev. E, 55:1355, 1997.

    Article  ADS  Google Scholar 

  27. J. Ankerhold and H. Grabert. Europhys. Lett., 47:285, 1999.

    Article  ADS  Google Scholar 

  28. G. Gamow. Z. Phys., 51:204, 1928.

    Article  ADS  Google Scholar 

  29. J.R. Oppenheimer. Phys. Rev., 31:80, 1928.

    ADS  Google Scholar 

  30. R.W. Gurney and E.U. Condon. Nature, 122:439, 1928.

    Article  ADS  MATH  Google Scholar 

  31. H. Hofmann. The Physics of Warm Nuclei and of Mesocopic Systems. Oxford University Press, 2005.

    Google Scholar 

  32. N. Bohr and J.A. Wheeler. Phys. Rev., 56:426, 1939.

    Article  MATH  ADS  Google Scholar 

  33. H.A. Kramers. Physica, 7:284, 1940.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. H. Hofmann. Phys. Rep., 284:137, 1997.

    Article  ADS  Google Scholar 

  35. Y.A. Oganessian. Nature, 400:242, 1999.

    Article  ADS  Google Scholar 

  36. S. Hofmann and G. Münzenberg. Rev. Mod. Phys., 72:733, 2000.

    Article  ADS  Google Scholar 

  37. Y.A. Oganessian. Phys. Rev. C, 63:011301, 2001.

    Article  ADS  Google Scholar 

  38. H. Attias and Y. Alhassid. Nucl. Phys. A, 625:565, 1997.

    Article  ADS  Google Scholar 

  39. P. Ring and P. Schuck. The Nuclear Many Body. Springer, 1980.

    Google Scholar 

  40. D. Bohm and D. Pines. Phys. Rev., 92:609, 1953.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. H. Hofmann and R. Sollacher. Ann. Phys., 184:62, 1988.

    Article  ADS  Google Scholar 

  42. R.L. Stratonovitch. Sov. Phys. Dokl., 2:416, 1958.

    ADS  Google Scholar 

  43. J. Hubbard. Phys. Rev. Lett., 3:77, 1959.

    Article  ADS  Google Scholar 

  44. A. Bohr and B.R. Mottelson. Nuclear Structure (vol. 1 & 2). Benjamin, 1975.

    Google Scholar 

  45. H. Hofmann and D. Kiderlen. Int. J. Mod. Phys. E, 7:243, 1998.

    Article  ADS  Google Scholar 

  46. H. Hofmann, G.-L. Ingold, and M. Thoma. Phys. Lett. B, 317:489, 1993.

    Article  ADS  Google Scholar 

  47. C. Rummel and H. Hofmann. Phys. Rev. E, 64:066126, 2001.

    Article  ADS  Google Scholar 

  48. C. Rummel and J. Ankerhold. Eur. Phys. J. B, 29:105, 2002.

    Article  ADS  Google Scholar 

  49. C. Rummel and H. Hofmann. Nucl. Phys. A, 727:24, 2003.

    Article  MATH  ADS  Google Scholar 

  50. C. Rummel. PhD thesis. TU München, 2004.

    Google Scholar 

  51. W.H. Miller. Adv. Chem. Phys., XXV:69, 1974.

    Article  Google Scholar 

  52. F.J. McLafferty and P. Pechukas. Chem. Phys. Lett., 27:511, 1974.

    Article  ADS  Google Scholar 

  53. W.H. Miller, S.D. Schwartz, and J.W. Tromp. J. Chem. Phys., 70:4889, 1983.

    Article  ADS  Google Scholar 

  54. E. Pollak. J. Chem. Phys., 107:64, 1997.

    Article  ADS  Google Scholar 

  55. M. Topaler and N. Makri. Chem. Phys. Lett., 210:285, 1993.

    Article  ADS  Google Scholar 

  56. M. Topaler and N. Makri. Chem. Phys. Lett., 210:448, 1993.

    Article  ADS  Google Scholar 

  57. D.E. Makarov and N. Makri. Chem. Phys. Lett., 221:482, 1994.

    Article  ADS  Google Scholar 

  58. M. Topaler and N. Makri. J. Chem. Phys., 101:7500, 1994.

    Article  ADS  Google Scholar 

  59. W.H. Miller. Faraday. Discuss., 110:1, 1998.

    Article  ADS  Google Scholar 

  60. H. Wang, X. Sun, and W.H. Miller. J. Chem. Phys., 108:9726, 1998.

    Article  ADS  Google Scholar 

  61. X. Sun, H. Wang, and W.H. Miller. J. Chem. Phys., 109:4190, 1998.

    Article  ADS  Google Scholar 

  62. J. Shao and N. Makri. J. Phys. Chem. A, 103:7753, 1999.

    Article  Google Scholar 

  63. K. Thompson and N. Makri. Phys. Rev. E, 59:4729(R), 1999.

    Article  ADS  Google Scholar 

  64. H. Wang, M. Thoss, and W.H. Miller. J. Chem. Phys., 112:47, 2000.

    Article  ADS  Google Scholar 

  65. Q. Shi and E. Gevan. J. Chem. Phys., 121:3393, 2004.

    Article  ADS  Google Scholar 

  66. T. Yamamoto. J. Chem. Phys., 33:281, 1960.

    Article  MathSciNet  ADS  Google Scholar 

  67. E. Wigner. Phys. Rev., 40:749, 1932.

    Article  MATH  ADS  Google Scholar 

  68. E. Pollak and B. Eckhardt. Phys. Rev. E, 58:5436, 1998.

    Article  ADS  Google Scholar 

  69. E. Pollak and J.L. Liao. J. Chem. Phys., 108:2733, 1998.

    Article  ADS  Google Scholar 

  70. J. Shao, J.L. Liao, and E. Pollak. J. Chem. Phys., 108:9711, 1998.

    Article  ADS  Google Scholar 

  71. E. Pollak. In S.D. Schwartz, editor, Theoretical Methods in Condensed Phase Chemistry. Kluwer Academic, Plenum, 2000.

    Google Scholar 

  72. E. Pollak and J. Shao. J. Chem. Phys., 115:6876, 2001.

    Article  ADS  Google Scholar 

  73. J. Ankerhold, M. Saltzer, and E. Pollak. J. Chem. Phys., 116:5925, 2002.

    Article  ADS  Google Scholar 

  74. C. Eckart. Phys. Rev., 35:1303, 1930.

    Article  ADS  Google Scholar 

  75. M. Smoluchowski. Ann. Phys. (Leipzig), 21:772, 1906.

    Google Scholar 

  76. J. Ankerhold, P. Pechukas, and H. Grabert. Phys. Rev. Lett., 87:086802, 2001.

    Article  ADS  Google Scholar 

  77. J. Ankerhold. In F. Benatti and R. Floreani, editors, Irreversible Quantum Dynamics, volume 622 of Lecture Notes in Physics. Springer, 2003.

    Google Scholar 

  78. J. Ankerhold, H. Grabert, and P. Pechukas. Chaos, 15:026106, 2005. Focus issue “100 Years of Brownian motion”.

    Article  MathSciNet  ADS  Google Scholar 

  79. H. Risken. The Fokker Planck Equation. Springer, 1984.

    Google Scholar 

  80. P. Pechukas, J. Ankerhold, and H. Grabert. J. Phys. Chem. B, 105:6638, 2001.

    Article  Google Scholar 

  81. H. Grabert, U. Weiss, and P. Talkner. Z. Phys. B, 55:87, 1984.

    Article  MathSciNet  ADS  Google Scholar 

  82. L. Machura, M. Kostur, P. Hänggi, P. Talkner, and J. Łuczka. Phys. Rev. E, 70:031107, 2004.

    Article  ADS  Google Scholar 

  83. J. Ankerhold. Europhys. Lett., 61:301, 2003.

    Article  ADS  Google Scholar 

  84. P. Pechukas, J. Ankerhold, and H. Grabert. Ann. Phys. (Leipzig), 9:653, 2000.

    Google Scholar 

  85. P. Hänggi and H. Thomas. Phys. Rep., 88:207, 1982.

    Article  ADS  MathSciNet  Google Scholar 

  86. P. Jung and P. Hänggi. Adv. Chem. Phys., 89:239, 1995.

    Google Scholar 

  87. Yu.M. Ivanchenko and L.A. Zil’berman. Sov. Phys. JETP, 28:1272, 1969.

    ADS  Google Scholar 

  88. V. Ambegaokar and B.I. Halperin. Phys. Rev. Lett., 25:1364, 1969.

    Article  ADS  Google Scholar 

  89. J. Ankerhold. Europhys. Lett., 67:280, 2004.

    Article  ADS  Google Scholar 

  90. L. Machura, M. Kostur, P. Talkner, J. Luczka, and P. Hänggi. Phys. Rev. E, 73:031105, 2005.

    Article  ADS  Google Scholar 

  91. H. Grabert, G.-L. Ingold, and B. Paul. Europhys. Lett., 44:360, 1998.

    Article  ADS  Google Scholar 

  92. R. P. Feynman. Statistical Mechanics. Benjamin, 1972.

    Google Scholar 

  93. S.E. Korshunov. Sov. Phys. JETP, 65:1025, 1987.

    Google Scholar 

  94. G.-L. Ingold, H. Grabert, and U. Eberhardt. Phys. Rev. B, 50:395, 1994.

    Article  ADS  Google Scholar 

  95. G.-L. Ingold and H. Grabert. Phys. Rev. Lett., 83:786, 1999.

    Article  Google Scholar 

  96. P. Hänggi and R. Bartussek. Lect. Notes Phys., 476:294, 1996.

    Article  Google Scholar 

  97. R.D. Astumian and P. Hänggi. Physics Today, 55:33, 2002.

    Article  Google Scholar 

  98. H. Linke, T.E. Humphrey, and P.E. Lindelof. Science, 286:2314, 1999.

    Article  Google Scholar 

  99. T.E. Humphrey, R. Newbury, R.P. Taylor, and H. Linke. Phys. Rev. Lett., 89:116801, 2002.

    Article  ADS  Google Scholar 

  100. J.B. Majer, J. Peguiron, M. Grifoni, M. Tusveld, and J.E. Mooij. Phys. Rev. Lett., 90:056802, 2003.

    Article  ADS  Google Scholar 

  101. P. Reimann. Phys. Rep., 361:57, 2002.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  102. P. Reimann, M. Grifoni, and P. Hänggi. Phys. Rev. Lett., 79:10, 1997.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  103. I. Goychuk, M. Grifoni, and P. Hänggi. Phys. Rev. Lett., 81:649, 1998.

    Article  ADS  Google Scholar 

  104. M. Grifoni, M.S. Ferreira, J. Peguiron, and J.B. Majer. Phys. Rev. Lett., 89:146801, 2002.

    Article  ADS  Google Scholar 

  105. S. Scheidl and V.M. Vinokur. Phys. Rev. B, 65:195305, 2002.

    Article  ADS  Google Scholar 

  106. J. Lehmann, S. Kohler, P. Hänggi, and A. Nitzan. Phys. Rev. Lett., 88:228305, 2002.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ankerhold, J. (2007). Tunneling in Open Systems: Dynamics. In: Quantum Tunneling in Complex Systems. Springer Tracts in Modern Physics, vol 224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-68076-4_6

Download citation

Publish with us

Policies and ethics