Advertisement

An autonomous sensor for 3D reconstruction

  • David Leevers
  • Pedro Gil
  • Francisco Martinho Lopes
  • João Pereira
  • José Castro
  • João Gomes-Mota
  • M. Isabel Ribeiro
  • João G.M. Gonçalves
  • Vítor Sequeira
  • Erik Wolfart
  • Vincent Dupourque
  • Vítor Santos
  • Stuart Butterfield
  • David Hogg
  • Kia Ng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1425)

Abstract

We describe an automated approach to the reconstruction of 3D interiors from laser range data and digital images. This is achieved using a scanning laser rangefinder and digital camera that are mounted on an autonomous mobile platform known as the AEST. The objective is to reproduce complete interiors that are accurate enough for surveying, virtual studio and Augmented Reality applications. The AEST selects and navigates to a series of capture points to progressively reconstruct a 3D textured model to the required degree of accuracy. Navigation and structural information is used to register the data from each new capture point relative to the partial model. The user interface is a web browser with a radio link to the AEST. Results can be viewed in a VRML window as they are obtained. The AEST has been developed in EU-ACTS project RESOLV.

Keywords

Mobile Robot Augmented Reality Ultrasonic Sensor Augmented Reality Application Laser Rangefinder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Castro, J., Santos, V., Ribeiro, M.I.: A Multi-Loop Navigation Architecture for Mobile Robots. Accepted for presentation to the IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium (to appear, May 1998)Google Scholar
  2. 2.
    Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM. 24(6) (1981) 381–395Google Scholar
  3. 3.
    Gomes-Mota, J., Ribeiro, M.I.: A Localisation Algorithm using Laser Scanner and Reconstructed Maps. Accepted for presentation to the 3rd. Portuguese Conference on Automatic Control, Lisbon, Portugal. (to appear, September 1998)Google Scholar
  4. 4.
    Klinker, G.J., Ahlers, K.H., Breen, D.E., Chevalier, P-Y., Crampton, C., Greer, D.S., Koller, D., Kramer, A., Rose, E., Tuceryan, M., Whitaker, R.T: Confluence of Computer Vision and Interactive Graphics for Augmented Reality. Presence: Teleoperators and Virtual Environments, special issue on Augmented Reality, MIT Press. 6(4) (1997) 433–451Google Scholar
  5. 5.
    Ng, K.C., Sequeira, V., Butterfield, S., Hogg, D., Gonçalves, J.G.M.: An Integrated Multi-Sensory System for Photo-Realistic 3D Scene Reconstruction. Int. Sym. on Real-Time Imaging and Dynamic Analysis, International Society for Photogrammetry and Remote Sensing, Hakodate, Japan. (to appear, June 1998)Google Scholar
  6. 6.
    Santos, V., Gonccalves, J.G.M., Vaz, F.: Perception Maps for the Local Navigation of a Mobile Robot: A Neural Network Approach. IEEE Int. Conf. on Robotics and Automation, San Diego, USA. (1994) 2193–2198Google Scholar
  7. 7.
    Santos, V., Gonçalves, J.G.M., Vaz, F.: Local Perception Maps for Autonomous Robot Navigation. Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Osaka. (1996) 821–827Google Scholar
  8. 8.
    Sequeira, V., Gonçalves, J.G.M., Ribeiro, M.I.: High-Level Surface Descriptions from Composite Range Images. Proc. IEEE Int. Symposium on Computer Vision. ISCV-95 (1995) 163–168Google Scholar
  9. 9.
    Sequeira, V.: Active Range Sensing for Three-Dimensional Environment Reconstruction. PhD Thesis, Dept. of Electrical and Computer Engineering, IST-Technical University of Lisbon, Portugal. (1996)Google Scholar
  10. 10.
    Sequeira, V., Gonçalves, J.G.M., Ribeiro, M.I.: Active View Selection for Efficient 3D Scene Reconstruction. Proc. ICPR'96-13th Int. Conf. on Pattern Recognition, Vienna — Trackl: Computer Vision, Vienna, Austria. (1996) 815–819Google Scholar
  11. 11.
    Sequeira, V., Ng, K.C., Butterfield, S., Goçalves, J.G.M., Hogg, D.C.: Three-Dimensional Textured Models of Indoor Scenes from Composite Range and Video Images. In: R.N. Ellson and J.H. Nurre, editors, Proceedings of SPIE, Three-Dimensional Image Capture and Applications. 3313 (1998)Google Scholar
  12. 12.
    Tsai, R.Y.: A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology using Off-the-shelf TV Cameras and Lenses. IEEE Journal of Robotics and Automation. RA-3(4) (1987) 323–344Google Scholar
  13. 13.
    Walker, M.W., Shao, L., Volz, R.A.: Estimating 3-D Location Parameters using Dual Number Quaternions. CVGIP: Image Understanding. 54(3) (1991) 358–367Google Scholar
  14. 14.
    Weng, J., Cohen, P., Herniou, M.: Camera Calibration with Distortion Models and Accuracy Evaluation. In IEEE Trans. PAMI. 14 (1992) 965-980Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • David Leevers
    • 1
  • Pedro Gil
    • 2
  • Francisco Martinho Lopes
    • 2
  • João Pereira
    • 2
  • José Castro
    • 3
  • João Gomes-Mota
    • 3
  • M. Isabel Ribeiro
    • 3
  • João G.M. Gonçalves
    • 4
  • Vítor Sequeira
    • 4
  • Erik Wolfart
    • 4
  • Vincent Dupourque
    • 5
  • Vítor Santos
    • 6
  • Stuart Butterfield
    • 7
  • David Hogg
    • 7
  • Kia Ng
    • 7
  1. 1.VERS AssociatesHemel HempsteadUK
  2. 2.Groupo Ambientes Interacti vos na Visualizacao e na AprendizagemInstituto de Engenharia de Sistemas e ComputadoresLisbonPortugal
  3. 3.Instituto Superior Técnico/Instituto de Sistemas e RobóticaLisboa CodexPortugal
  4. 4.Joint Research Centre - European Commission - TP 270Ispra (VA)Italy
  5. 5.Robosoft SA, Technopole d'IzarbelBidartFrance
  6. 6.Departamento de Engenharia MecânicaUniversidade de AveiroAveiroPortugal
  7. 7.School of Computer StudiesUniversity of LeedsLeedsUK

Personalised recommendations