A combined probabilistic framework for learning gestures and actions

  • Francisco Escolano
  • Miguel Cazorla
  • Domingo Gallardo
  • Faraón Llorens
  • Rosana Satorre
  • Ramón Rizo
4 Applied Artificial Intelligence and Knowledge-Based Systems in Specific Domains Human-Computer Interaction
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1416)


In this paper we introduce a probabilistic approach to support visual supervision and gesture recognition. Task knowledge is both of geometric and visual nature and it is encoded in parametric eigenspaces. Learning processes for compute modal subspaces (eigenspaces) are the core of tracking and recognition of gestures and tasks. We describe the overall architecture of the system and detail learning processes and gesture design. Finally we show experimental results of tracking and recognition in block-world like assembling tasks and in general human gestures.


Visual Inspection Gesture Recognition Learning Probabilistic Constraints Eigenmethods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baumberg, A., Hogg, D.: Learning Flexible Models in Image Sequences. European Conference on Computer Vision. (1994).Google Scholar
  2. 2.
    Black, M.J., Jepson, A.D.: EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation. In Proc. ECCV-96, Cambridge 329–342.(1996).Google Scholar
  3. 3.
    Cédras, C., Shah, M.:Motion Based Recognition: A Survey. Tech-Rep. Department of Computer Science. Univ. of Central Florida. (1995).Google Scholar
  4. 4.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham J.: Trainable Method of Parametric Shape. Image and Vision Computing. 10 289–294. (1992).Google Scholar
  5. 5.
    Cootes, T.F., Taylor, C.J.: Active Shape Models. Smart Snakes. Proc. British Machine Vision Conference. 266–275. (1992).Google Scholar
  6. 6.
    Cootes, T.F., Taylor, C.J., Lanitis, A., Cooper, D.H., Graham, J.: Building and Using Flexible Models Incorporating Grey-Level Information. In Proc. International Conference of Computer Vision. (1993).Google Scholar
  7. 7.
    Davis, J.W.: Appearance-Based Motion Recognition of Human Action. MIT Media Lab Tech Rep. 387. (1996).Google Scholar
  8. 8.
    Darrell, T.J., Essa, I.A., Pentland, A.P.: Task Specific Gesture Analysis in Real Time Using Interpolated Views. IEEE Trans. PAMI. 18 1236–1242. (1996).Google Scholar
  9. 9.
    Escolano, F.: Plantillas Deformables Extendidas: Modelización Local Robusta y Caracterización Basada en Auto-Modelos para el Reconocimiento y Tracking de Estructuras Geométricas Activas. Tesis Doctoral. Universidad de Alicante (1997).Google Scholar
  10. 10.
    Escolano, F., Cazorla, M., Gallardo, D., Rizo, R.: Deformable Templates for Tracking and Analysis of Intravascular Ultrasound Sequences. EMMCVPR-97: International Workshop on Energy Minimization Methods for Computer Vision and Pattern Recognition. Lecture Notes in Computer Science N.1223. Springer Verlag 521–534.(1997).Google Scholar
  11. 11.
    Escolano, F., Cazorla, M., Gallardo, D., Llorens, F., Satorre R., Rizo, R.: Spatio-Temporal Deformable Templates for Gesture Tracking and Recognition. VII Conference of the Spanish Association of Artificial Intelligence (1997).Google Scholar
  12. 12.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition. New York: Academic (1972).Google Scholar
  13. 13.
    Kirby, M., Weisser, F., Dangelmayr, G.: A model problem in the representation of digital image sequences. Patter Recognition. 26 63–73. (1993).Google Scholar
  14. 14.
    Lanitis, A., Taylor, C.J., Cootes, T.F., Ahmed, T.: Automatic Interpretation of Human Faces and Hand Gestures Using Flexible Models. Tech-Rep. Department of Medical Biophysics. University of Manchester. (1994).Google Scholar
  15. 15.
    Moghaddam, B., Pentland, A.: Face Recognition using View-Based and Modular Eigenspaces. M.I.T. Technical Report No. 301. (1994)Google Scholar
  16. 16.
    Murase, H., Sakai, R.: Moving object recognition in eigenspace representation: gait analysis and lip reading. Patter Recognition Letters. 17. 155–162. (1996).Google Scholar
  17. 17.
    Nastar, C., Ayache, N.: A New Physically Based Model for Efficient Tracking and Analysis of Deformations. In Proc. Geometric Reasoning for Perception and Action. Springer-Verlag (1993).Google Scholar
  18. 18.
    Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience. 3 71–89. (1991).Google Scholar
  19. 19.
    Zhu, S.C., Yuille, A.L.: FORMS: A Flexible Object Recognition and Modeling System. Int. Journal of Computer Vision. (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Francisco Escolano
    • 1
  • Miguel Cazorla
    • 1
  • Domingo Gallardo
    • 1
  • Faraón Llorens
    • 1
  • Rosana Satorre
    • 1
  • Ramón Rizo
    • 1
  1. 1.Grupo i3a: Informática Industrial e Inteligencia Artificial Departamento de Ciencia de la Computación e Inteligencia ArtificialUniversidad de AlicanteSan VicenteSpain

Personalised recommendations