Autoassociative neural networks for fault diagnosis in semiconductor manufacturing

  • Luis J. Barrios
  • Lissette Lemus
3 Machine Learning Learning Advances in Neural Networks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1416)


As yield and productivity are increasingly competing in importance with technology in integrated circuit manufacturing, semiconductor industry can benefit from advances on artificial intelligence. This paper shows a fault diagnosis system based on autoassociative neural networks, a little exploited processing architecture in industrial applications. The system integrates three autoassociative algorithms and it selects the most suitable in each case. It optimizes the processing time while guarantees an accurate diagnosis. The feasibility of the solution is justified and comparative results are presented and discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pouliezos, A.D., Stavrakakis, G.S.:Real Time Fault Monitoring of Industrial Process. Kluwer, Dordrecht, The Netherlands (1994)Google Scholar
  2. 2.
    Hertz, J., Krogh, A., Palmer, R.G.:Introduction to the theory of Neural Computation. Addison-Wesley, Redwood, CA (1991)Google Scholar
  3. 3.
    Recio, M., Grandes, A. et al.: Advanced software system for yield improvement on manufacturing fab. In Keshavarzi, Prasad and Hartmann, editors, Microelectronic Manufacturing Yield, reliability and Failure Analysis II. SPIE Vol. 2874. (1996) 219–229Google Scholar
  4. 4.
    Hsu, K., Brady, D., Psaltis, D.: Experimental demonstration of optical neural computers. In Anderson, editor, Neural Information Processing Systems, American Institute of Physics. Denver (1995)Google Scholar
  5. 5.
    Peterson, C., Hartman, E.: Explorations of the mean field theory learning algorithm. Neural Networks, Vol 2. (1989) 475–494Google Scholar
  6. 6.
    Hopfield, J.J.: Neural networks and physical system with emergent collective computational abilities. In Anderson and Rosenberg, editors, Proceedings of the National Academy of Science. (1982) 2554–2558Google Scholar
  7. 7.
    Camargo, F.A.: Learning algorithms in neural networks. Technical report, The DCC Laboratory, Computer Science Department-Columbia University New York (1990)Google Scholar
  8. 8.
    Peterson, C., Anderson, J.R.: A mean field theory learning algorithm for neural networks. Complex Systems Vol 1. (1987) 995–1019Google Scholar
  9. 9.
    Lemus, L.: Redes neuronales autoasociativas para clasificar fallos en procesos de fabricación de obleas. Master's thesis, Universidad Politécnica de Madrid (1996).Google Scholar
  10. 10.
    Ackley, D.H., Hinton, G.E., Sejnoswski, T.J.: A learning algorithm for Boltzman machines. Cognitive Science, 9. (1985)Google Scholar
  11. 11.
    Takefuji, Y.: Neural Network Parallel Computing. KLUWER Acad. Pu., (1992)Google Scholar
  12. 12.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley and Sons, (1973)Google Scholar
  13. 13.
    Hagiwara, M.: Acceleration for both Boltzman machine learning and mean field theory learning. IEEE, I: 687-1:692, (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Luis J. Barrios
    • 1
  • Lissette Lemus
    • 1
  1. 1.Instituto de Automática Industrial (CSIC),La Poveda, Arganda del ReySpain

Personalised recommendations