From the nearest neighbour rule to decision trees

  • J. S. Sánchez
  • F. Pla
  • F. J. Ferri
3 Machine Learning Machine Learning Applications: Tools and Methods
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1416)


This paper proposes an algorithm to design a tree-like classifier whose result is equivalent to that achieved by the classical Nearest Neighbour rule. The procedure consists of a particular decomposition of a d-dimensional feature space into a set of convex regions with prototypes from just one class. Some experimental results over synthetic and real databases are provided in order to illustrate the applicability of the method.

Key words

Nearest Neighbour Decision Tree Algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cover, T.M. and Hart, P.E.: Nearest neighbour pattern classification, IEEE Trans. on Information Theory 13 (1967) 21–27.Google Scholar
  2. 2.
    Fukunaga, K. and Narendra, P.M.: A branch and bound algorithm for computing k-nearest neighbors, IEEE Trans. on Computers 24 (1975) 750–753.Google Scholar
  3. 3.
    Vidal, E.: An algorithm for finding nearest neighbours in (approximately) constant average time, Pattern Recognition Letters 4 (1986) 145–157.Google Scholar
  4. 4.
    Djouadi, A. and Bouktache, E.: A fast algorithm for the nearest-neighbor classifier, IEEE Trans. on Pattern Analysis and Machine Intelligence 19 (1997) 277–282.Google Scholar
  5. 5.
    Devijver, P.A. and Kittler, J.: Pattern Recognition: A statistical approach. Prentice Hall, Englewood Cliffs, NJ (1982).Google Scholar
  6. 6.
    Hart, P.E.: The condensed nearest neighbor rule, IEEE Trans. on Information Theory 14 (1968) 515–516.Google Scholar
  7. 7.
    Toussaint, G.T., Bhattacharya, B.K. and Poulsen, R.S.: The application of Voronoi diagrams to nonparametric decision rules, In: Proc. of Computer Science & Statistics: 16 th Symposium of the Interface, Atlanta, GA (1984) 97–108.Google Scholar
  8. 8.
    Chen, C.H. and Józwik, A.: A sample set condensation algorithm for the class sensitive artificial neural network, Pattern Recognition Letters 17 (1996) 819–823.Google Scholar
  9. 9.
    Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J.: Classification and regression trees. Chapman & Hall, New York, NY (1984).Google Scholar
  10. 10.
    Heath, D., Kasif, S. and Salzberg, S.: Learning oblique decision trees, In: Proc. of the 13 th International Joint Conference on Artificial Intelligence (1993) 1202–1207.Google Scholar
  11. 11.
    Sánchez, J.S.: Aprendizaje y clasificación basados en criterios de vecindad. Métodos alternativos y análisis comparativo. Ph.D. Thesis. Dept. of Computer Science, University Jaume I, Castelló, Spain (1998).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • J. S. Sánchez
    • 1
  • F. Pla
    • 1
  • F. J. Ferri
    • 2
  1. 1.Dept. d'InformàticaUniversitat Jaume ICastellóSpain
  2. 2.Dept. d'Informàtica i ElectrònicaUniversitat de ValènciaBurjassot (Valencia)Spain

Personalised recommendations