Advertisement

A genetic algorithm for robust motion planning

  • Domingo Gallardo
  • Otto Colomina
  • Francisco Flórez
  • Ramón Rizo
1 Synthesis Tasks Motion Planning for Robots
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1416)

Abstract

This paper proposes a solution by genetic algorithms to the problem of planning a robust and suboptimal trajectory in the velocity space of a mobile robot. Robust trajectories are obtained introducing cumulative noise in the evaluation of the fitness function and introducing modifications in the genetic algorithm to taking into account this new feature. Results are presented that show the performance of the algorithm in different environments and the influence of the noise in the planned trajectories.

Keywords

nonholonomic motion planning robust robot motion evolutionary computation in noisy environments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Ahuactzin, E.G. Talbi, P. Bessiere, and E. Mazer. Using genetic algorithms for robot motion planning. In European Conference on Artificial Intelligence (ECAI92), 1992.Google Scholar
  2. 2.
    R. Chatila, M. Khatib, H. Jaouni, and J-P. Laumond. Dynamic path modification for car-like non-holonomic mobile robots. In Proc. IEEE Int. Conf. Robotics and Automation, 1997.Google Scholar
  3. 3.
    A. Divelbiss and J. Wen. Nonholonomic motion planning with inequality constraints. In Proc. IEEE Int. Conf. Robotics and Automation, 1994.Google Scholar
  4. 4.
    A. Doyle. Algorithms and computational techniques for robot path planning. PhD thesis, School of Electronic Engineering and Computer Systems, University of Wales, 1995.Google Scholar
  5. 5.
    J. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.Google Scholar
  6. 6.
    M.J. Rendas and W.Tetenoire. Definition of exploratory trajectories in robotics using genetic algorithms. In Tenth International Conference in Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, 1997.Google Scholar
  7. 7.
    J. Xiao, Z. Michalewicz, L. Zhang, and K. Trojanowski. Adaptive evolutionary planner/navigator for robots. IEEE Trans. on Evolutionary Computation, 1, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Domingo Gallardo
    • 1
  • Otto Colomina
    • 1
  • Francisco Flórez
    • 1
  • Ramón Rizo
    • 1
  1. 1.Grupo i3a: Informática Industrial e Inteligencia Artificial Departamento de Ciencia de la Computación e Inteligencia ArtificialUniversidad de AlicanteSan VicenteSpain

Personalised recommendations