Subanalytic stratifications and bisimulations

  • Gerardo Laflerriere
  • George J. Pappas
  • Shankar Sastry
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1386)


Decidability results for the verification of hybrid systems consist of constructing special finite state quotients called bisimulations whose properties are equivalent to those of the original infinite state system. This approach has had success in the case of timed automata and linear hybrid automata. In this paper, the powerful frameworks of stratification theory and subanalytic sets are presented and used in order to obtain bisimulations of certain analytic vector fields on analytic manifolds.


Hybrid System Integral Curve Hybrid Automaton Analytic Manifold Real Analytic Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Alur and D.L. Dill, A theory of timed automata, Theoretical Computer Science 126 (1994), 183–235.CrossRefGoogle Scholar
  2. 2.
    R. Alur, T.A. Henzinger, and E.D. Sontag (eds.), Hybrid systems III, Springer-Verlag, 1996.Google Scholar
  3. 3.
    P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry (eds.), Hybrid systems II, Springer-Verlag, 1995.Google Scholar
  4. 4.
    P Antsaklis, W. Kohn, A. Nerode, and S. Sastry (eds.), Hybrid systems IV, Springer-Verlag, 1997.Google Scholar
  5. 5.
    Edward Bierstone and Pierre D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. (1988), no. 67, 5–42.Google Scholar
  6. 6.
    William M. Boothby, An introduction to differentiable manifolds and riemannian geometry, Academic Press, 1975.Google Scholar
  7. 7.
    P. Caines and Y.J. Wei, The hierarchical lattices of a finite state machine, Systems and Control Letters 25 (1995), 257–263.Google Scholar
  8. 8.
    Karlis Cerans and Juris Viksna, Deciding reachability for planar multi-polunomial systems, Hybrid Systems III (Berlin, Germany) (R. Alur, T. Henzinger, and E.D. Sontag, eds.), Lecture Notes in Computer Science, vol. 1066, Springer Verlag, Berlin, Germany, 1996, pp. 389–400.Google Scholar
  9. 9.
    J.A. Dieudonné, Foundations of modern analysis, Academic Press, 1969.Google Scholar
  10. 10.
    R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel (eds.), Hybrid systems, Springer-Verlag, 1993.Google Scholar
  11. 11.
    T.A. Henzinger, Hybrid automata with finite bisimulations, ICALP 95: Automata, Languages, and Programming (Z. Fülöp and F. Gécseg, eds.), Springer-Verlag, 1995, pp. 324–335.Google Scholar
  12. 12.
    H. Hironaka, Subanalytic sets, In Number Theory, Algebraic Geometry, and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya Publications, 1973, pp. 453–493.Google Scholar
  13. 13.
    O. Maler (ed.), Hybrid and real-time systems, Springer-Verlag, 1997.Google Scholar
  14. 14.
    George J. Pappas and Shankar Sastry, Towards continuous abstractions of dynamical and control systems, Hybrid Systems IV (Berlin, Germany) (P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, eds.), Lecture Notes in Computer Science, vol. 1273, Springer Verlag, Berlin, Germany, 1997, pp. 329–341.Google Scholar
  15. 15.
    Héctor J. Sussmann, Subanalytic sets and feedback control, Journal of Differential Equations 31 (1979), no. 1, 31–52.Google Scholar
  16. 16.
    —, Real-analytic desingularization and subanalytic sets: An elementary approach, Transactions of the American Mathematical Society 317 (1990), no. 2, 417–461.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Gerardo Laflerriere
    • 1
  • George J. Pappas
    • 1
  • Shankar Sastry
    • 2
  1. 1.Department of Mathematical SciencesPortland State UniversityPortland
  2. 2.Department of Electrical Engineering and Computer SciencesUniversity of California at BerkeleyBerkeley

Personalised recommendations