Graph clustering I: Cycles of cliques

Extended abstract
  • F. J. Brandenburg
Clustering and Labelling
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1353)


A graph is a cycle of cliques, if its set of vertices can be partitioned into clusters, such that each cluster is a clique and the cliques form a cycle. Then there is a partition of the set of edges into inner edges of the cliques and interconnection edges between the clusters. Cycles of cliques are a special instance of two-level clustered graphs. Such graphs are drawn by a two phase method: draw the top level graph and then browse into the clusters. In general, it is NP-hard whether or not a graph is a two-level clustered graph of a particular type, e.g. a clique or a planar graph or a triangle of cliques. However, it is efficiently solvable whether or not a graph is a path of cliques or is a large cycle of cliques.


Corn Bedding 


  1. 1.
    C.J. Alpert and A.B. Kahng: Recent directions in netlist partitioning: a survey. Integration, the VLSI J. 19 (2995), 1–18.Google Scholar
  2. 2.
    J. Bosik: Decompositions of Graphs. Kluvwer Academic Publishers, Dordrecht (1990).Google Scholar
  3. 3.
    F.J. Brandenburg: Designing graph drawings by layout graph grammars. Graph Drawing 94, LNCS 894 (1995), 416–427.Google Scholar
  4. 4.
    R.C. Brewster, P. Hell and G. MacGillivray: The complexity of restricted graph homomorphisms. Discrete Mathematics 167/168 (1997), 145–154.CrossRefGoogle Scholar
  5. 5.
    U. Dogrusöz, B. Madden and P. Madden: Circular layout in the graph layout toolkit. Graph Drawing 96, LNCS 1190 (1997), 92–100.Google Scholar
  6. 6.
    D. Der and M Tarsi: Graph decomposition is NP-complete: proof of Holyer's conjecture. SIAM J. Comput. 26 (1997), 1166–1187.CrossRefGoogle Scholar
  7. 7.
    P. Eades and Q. W. Feng: Multilevel visualization of clustered graphs.Graph Drawing 96, LNCS 1190 (1997), 101–112.Google Scholar
  8. 8.
    P. Eades, Q.W. Feng and X. Lin: Straight-line drawing algorithms for hierarchical graphs and clustered graphs. Graph Drawing 96, LNCS 1190 (1997), 113–128.Google Scholar
  9. 9.
    P. Eades, J. Marks and S. North: Graph-Drawing Contest Report. Graph Drawing 96, LNCS 1190 (1997), 129–138.Google Scholar
  10. 10.
    M.R. Garey and D.S. Johnson: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Fransisco (1979).Google Scholar
  11. 11.
    D. J. Gschwindt and T. P. Murthagh: A recursive algorithm for drawing hierarchical graphs. Technical Report CS-89-02, Williams College, Williamstown (1989).Google Scholar
  12. 12.
    D. Harel: On visual formalisms. Comm. ACM 31 (1988), 514–530.CrossRefGoogle Scholar
  13. 13.
    P. Hell and J. Nešetřil: On the complexity of H-coloring. J. of Combinatorial Theory, Series B 48 (1990), 92–110.Google Scholar
  14. 14.
    M. Himsolt: Konzeption und Implementierung von Grapheditoren. Shaker Verlag, Aachen (1993).Google Scholar
  15. 15.
    I. Holyer: The NP-completeness of some edge partition problems. SIAM J. Comput., 10 (1981), 713–717.CrossRefGoogle Scholar
  16. 16.
    J. Kratochvil: String Graphs. II. Recognizing string graphs is NP-Hard. J. of Combinatorial Theory, Series B 52 (1991), 67–78.Google Scholar
  17. 17.
    J. Kratochvil, M. Goljan and P. Kučera: String Graphs. Academia, Prague (1986).Google Scholar
  18. 18.
    T. Lengauer: Combinatorial Algorithms for Integrated Circuit Layout. Wiley-Teubner Series (1990).Google Scholar
  19. 19.
    U. Manber: Introduction to Algorithms a Creative Approach. Addison Wesley, Reading (1989).Google Scholar
  20. 20.
    E.B. Messinger, L.A. Rowe and R.R. Henry: A divide-and conquer algorithm for the automatic layout of large directed graphs. IEEE Trans. Systems Man Cybernetics 21 (1991), 1–12.Google Scholar
  21. 21.
    R. Sablowski and A. Frick: Automatic graph clustering. Graph Drawing 96, LNCS 1190 (1997), 396–400.Google Scholar
  22. 22.
    F.-S. Shieh and C.L. McCreary: Directed graphs drawing by clan-based decomposition. Graph Drawing 95, LNCS 1027 (1996), 472–482.Google Scholar
  23. 23.
    K. Sugiyama and K. Misue: Visualization of structural information: automatic drawing of compound graphs. IEEE Trans. Systems Man Cybernetics 21 (1991), 876–892.CrossRefGoogle Scholar
  24. 24.
    R.E. Tarjan: Decomposition by clique separators. Discrete Math. 55 (1985), 221–232.CrossRefGoogle Scholar
  25. 25.
    S.H. Whitesides: An algorithm for finding clique cut-sets. Inf. Proc. Letters 12 (1981), 31–32.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • F. J. Brandenburg
    • 1
  1. 1.Lehrstuhl für InformatikUniversität PassauPassauGermany

Personalised recommendations