Optimising the complete image feature extraction chain

  • M. Mirmehdi
  • P. L. Palmer
  • J. Kittler
Session S1B: Segmentation and Grouping
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1352)


The hypothesis verification stage of the traditional image processing approach, consisting of low, medium, and high level processing, will suffer if the set of low level features extracted are of poor quality. We investigate the optimisation of the feature extraction chain by using Genetic Algorithms. The fitness function is a performance measure which reflects the quality of an extracted set of features. We will present some results and compare them with a Hill-Climbing approach.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Mirmehdi, P.L. Palmer, J. Kittler, and H. Dabis. Complex feedback strategies for object recognition. Submitted to IEEE Transcations in Image Processing, 1996.Google Scholar
  2. 2.
    M. Mirmehdi, P.L. Palmer, J. Kittler, and H. Dabis. Complex feedback strategies for hypothesis generation and verification. In Proceedings of the 7th British Machine Vision Conference, pages 123–132. BMVA Press, 1996.Google Scholar
  3. 3.
    P.L. Palmer, H. Dabis, and J. Kittler. A performance measure for boundary detection algorithms. CVGIP: Image Understanding, 63(3):476–494, 1996.Google Scholar
  4. 4.
    B. Draper, A. Hanson, and E. Riseman. Knowledge-directed vision: Control, learning and integration. Proceedings of the IEEE, 84(11):1625–1637, 1996.Google Scholar
  5. 5.
    M. Mirmehdi, P.L. Palmer, and J. Kittler. Framework for control of parameters of low-level processes in early vision. Submitted to ECIS Workshop on Computational Vision, 1995.Google Scholar
  6. 6.
    M. Mirmehdi, P.L. Palmer, J. Kittler, and H. Dabis. Hypothesis generation and verification using complex feedback strategies for object recognition. Technical report, University of Surrey VSSP-TR-2/96, 1996.Google Scholar
  7. 7.
    D. Goldberg. Genetic algorithms in search, optimization & machine learning. Addison-Wesley, 1989.Google Scholar
  8. 8.
    P. Andrey and P. Tarroux. Unsupervised image segmentation using a distributed genetic algorithm. Pattern Recognition, 27(5):659–673, 1994.Google Scholar
  9. 9.
    S.K. Pal, D. Bhandari, and M.K. Kundu. Genetic algorithms for optimal image enhancement. Pattern Recognition Letters, 15(3):261–271, 1994.Google Scholar
  10. 10.
    S. Bhandarkar, Y. Zhang, and W. Potter. An edge-detection technique using genetic algorithm-based optimization. Pattern Recognition, 27(9):1159–1180, 1994.Google Scholar
  11. 11.
    E. Lutton and P. Martinez. A genetic algorithm for the detection of 2d geometric primitives in images. In Proceedings of International Conference on Pattern Recognition, pages 526–528, 1994.Google Scholar
  12. 12.
    G. Roth and M. D. Levine. Geometric primitive extraction using a genetic algorithm. IEEE PAMI, 16(9):901–905, 1994.Google Scholar
  13. 13.
    H. Saito and M. Mori. Application of genetic algorithms to stereo matching of images. Pattern Recognition Letters, 16(8):815–821, 1995.Google Scholar
  14. 14.
    M. Mirmehdi, P.L. Palmer, and J. Kittler. Genetic optimisation of the image feature extraction process. Pattern Recognition Letters, 18(4):355–365, 1997.Google Scholar
  15. 15.
    W. K. Pratt. Digital Image Processing. Wiley and Sons, 1978.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • M. Mirmehdi
    • 1
  • P. L. Palmer
    • 2
  • J. Kittler
    • 2
  1. 1.Dept. of Computer ScienceUniversity of BristolBristolEngland
  2. 2.Centre for Vision, Speech and Signal ProcessingSurrey UniversityGuildfordEngland

Personalised recommendations