Skip to main content

A natural norm for color processing

  • Session T2A: Color Vision I
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1351))

Abstract

We show that the geometrical framework, in which color images are considered as surfaces, results in a meaningful operator for enhancing color images. The area functional, or “norm”, captures the way we would like the smoothing process to act on the different color channels while exploring the coupling between them. Next, the steepest descent flow associated with the first variation of this functional is shown to be a natural selective smoothing filter for the color case. Here we justify the usage of the area norm and the Beltrami steepest descent flow in the color case. We list the requirements, compare to other recent norms, relate to line element methods in color, and conclude with simulation results.

This work is supported in part by the Applied Mathematics Subprogram of the Office of Energy Research under DE-AC03-76SF00098, and ONR grant under N0001496-1-0381.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P Blomgren and T F Chan. Color TV: Total variation methods for restoration of vector valued images. cam TR, UCLA, 1996.

    Google Scholar 

  2. A Chambolle. Partial differential equations and image processing. In Proceedings IEEE ICIP, Austin, Texas, November 1994.

    Google Scholar 

  3. R Kimmel, N Sochen, and R Malladi. From high energy physics to low level vision. In Lecture Notes In Computer Science: First International Conference on Scale-Space Theory in Computer Vision, volume 1252, pages 236–247. Springer-Verlag, 1997.

    Google Scholar 

  4. R Kimmel, N Sochen, and R Malladi. Images as embedding maps and minimal surfaces: Movies, color, and volumetric medical images. In Proc. of IEEE CVPR'97, pages 350–355, Puerto Rico, June 1997.

    Google Scholar 

  5. D L MacAdam. Visual sensitivity to color differences in daylight. J. Opt. Soc. Am., 32:247, 1942.

    Google Scholar 

  6. D L MacAdam. Specification of small chromaticity differences. J. Opt. Soc. Am., 33:18, 1943.

    Google Scholar 

  7. D Mumford and J Shah. Boundary detection by minimizing functionals. In Proceedings of CVPR, Computer Vision and Pattern Recognition, San Francisco, 1985.

    Google Scholar 

  8. A M Polyakov. Physics Letters, 103B:207, 1981.

    Google Scholar 

  9. In B M ter Haar Romeny, editor, Geometric-Driven Diffusion in Computer Vision. Kluwer Academic Publishers, The Netherlands, 1994.

    Google Scholar 

  10. L Rudin, S Osher, and E Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60:259–268, 1992.

    Google Scholar 

  11. G Sapiro. Vector-valued active contours. In Proceedings IEEE CVPR'96, pages 680–685, 1996.

    Google Scholar 

  12. G Sapiro and D L Ringach. Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. Image Proc., 5:1582–1586, 1996.

    Google Scholar 

  13. E Schrödinger. Grundlinien einer theorie der farbenmetrik in tagessehen. Ann. Physik, 63:481, 1920.

    Google Scholar 

  14. J Shah. Curve evolution and segmentation functionals: Application to color images. In Proceedings IEEE ICIP'96, pages 461–464, 1996.

    Google Scholar 

  15. N Sochen, R Kimmel, and R Malladi. A general framework for low level vision. IEEE Trans. on Image Processing, to appear, 1997.

    Google Scholar 

  16. N Sochen and Y Y Zeevi. Using Vos-Walraven line element for Beltrami flow in color images. EE-Technion and TAU HEP report, Technion and Tel-Aviv University, March 1997.

    Google Scholar 

  17. W S Stiles. A modified Helmholtz line element in brightness-colour space. Proc. Phys. Soc. (London), 58:41, 1946.

    Google Scholar 

  18. H Helmholtz von. Handbuch der Psychologishen Optik. Voss, Hamburg, 1896.

    Google Scholar 

  19. J J Vos and P L Walraven. An analytical desription of the line element in the zonefluctuation model of colour vision II. The derivative of the line element. Vision Research, 12:1345–1365, 1972.

    Google Scholar 

  20. J Weickert. Scale-space properties of nonlinear diffusion filtering with diffusion tensor. Report no. 110, laboratory of technomathematics, University of Kaiserslautern, P.O. Box:3049, 67653 Kaiserslautern, Germany, 1994.

    Google Scholar 

  21. G Wyszecki and W S Stiles.Color Science: Concepts, and Methods, Qualitative Data and Formulae, (2nd edition). Jhon Wiley & Sons, 1982.

    Google Scholar 

  22. A. Yezzi. Modified curvature motion for image smoothing and enhancement. IEEE Trans. IP, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roland Chin Ting-Chuen Pong

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kimmel, R. (1997). A natural norm for color processing. In: Chin, R., Pong, TC. (eds) Computer Vision — ACCV'98. ACCV 1998. Lecture Notes in Computer Science, vol 1351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63930-6_108

Download citation

  • DOI: https://doi.org/10.1007/3-540-63930-6_108

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63930-5

  • Online ISBN: 978-3-540-69669-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics