Advertisement

An adaptive distributed fault-tolerant routing algorithm for the star graph

  • Leqiang Bail
  • Hiroyuki Ebara
  • Hideo Nakano
  • Hajime Maeda
Session 2B
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1350)

Abstract

This paper presents an adaptive distributed fault-tolerant routing algorithm for the n-star graph. Based on the local failure information and the properties of the star graph, the algorithm can make routing decisions without deadlock and livelock. After faults are encountered, the algorithm routes messages to a given destination by finding a fault-free n —1-star graph. As long as the number f of faults (node faults and/or edge faults) is less than the degree n − 1 of the n-star graph, the algorithm can adaptively find a path of length at most d + 6f to route messages from a source to a destination, where d is the distance between tow nodes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. B. Akers, D. Harel, and B. Krishnamuthy. “The star graph: An attractive alternative to the n-cube”. Proc. Int. Conf. Parallel Proceeding, pages 393–400, 1987.Google Scholar
  2. 2.
    S. B. Akers and B. Krishnamurthy. “A Group-Theoretic Model for Symmetric Interconnection Networks”. IEEE Trans. Computs., 38(4):555–566, 1989.Google Scholar
  3. 3.
    N. Bagherzadeh, N. Nassif, and S. Latifi. “A Routing and Broadcasting Scheme on Faulty Star Graphs”. IEEE Trans. Computs., 42(11):1398–1403, 1993.Google Scholar
  4. 4.
    L. Chungti, B. Sourav, and T. Jack. “Performance Evaluation of Fault-tolerant Routing on Star Networks”. Proceedings of the Scalable High Performance Computing Conference, pages 650–657, 1994.Google Scholar
  5. 5.
    Qian-Ping Gu and Shietung Peng. “Linear Time Algorithm for Fault Tolerant Routing in Hypercubes and Star Graphs”. IEICE Trans. Inf. Systs., E78D(9):1171–1177, 1995.Google Scholar
  6. 6.
    Qian-Ping Gu and Shietung Peng. “Set-To-Set Fault Tolerant Routing in Star Graphs”. IEICE Trans. Inf. Systs., E79-D(4):282–289, 1996.Google Scholar
  7. 7.
    Z. Jovanovic and J. Misic. “Fault Tolerance of the Star Graph Interconnection Network”. Information Processing Letters, 49:145–150, 1994.Google Scholar
  8. 8.
    J. S. Jwo, S. Lakshmivarahan, and S. K. Dhall. “Embeding of cycles and grids in star graphs”. J. Circuits, Syst., Comput., l(1):43–74, 1991.Google Scholar
  9. 9.
    Youran Lan. “An Adaptive Fault-tolerant Routing Algorithm for Hypercube Multicomputers”. IEEE Trans. Parallel. Distrib Systs., 6(11):1147–1152, 1995.Google Scholar
  10. 10.
    Latifi-Shahram. “Parallel dimension permutations on star-graph”. Proceedings of the IFIP WG10.3 Working on Architectures and Compilation Techniques for Fine and Medium Grain Parallelism. Orlando, FL, USA, pages 191–201, 1993.Google Scholar
  11. 11.
    James A. McHugh. “Algorithmic Graph Theory”. Prentice-Hall Inc., 1990.Google Scholar
  12. 12.
    Y. Rouskov, S. Latify, and P. K. Srimani. “Conditional Fault Diameter of Star Graph Networks”. Journal of Parallel and Distributed Computing., 33(1):91–98, 1996.Google Scholar
  13. 13.
    Ramaraghavan Srinivasan, Vipin Chaudhary, and Syed M Mahmud. “Contention Sensitive Fault-tolerant Routing Alrorithm For Hypercubes”. International Symposium on Parallel Architectures, Algorithms and Networks, pages 197–204, 1994.Google Scholar
  14. 14.
    Chien-Chun Su and K. G Shin. “Adaptive Fault-Tolerant Deadlock-Free Routing in Mesh and Hypercubes”. IEEE Trans. Computs., 45(6):666–683, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Leqiang Bail
    • 1
  • Hiroyuki Ebara
    • 2
  • Hideo Nakano
    • 3
  • Hajime Maeda
    • 1
  1. 1.Osaka UniversitySuits, OsakaJapan
  2. 2.Kansai UniversitySuits, OsakaJapan
  3. 3.Osaka City UniversitySugimotoJapan

Personalised recommendations