Fast algorithms for computing β-Skeletons and their relatives

  • S. V. Rao
  • Asish Mukhopadhyay
Session 8A
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1350)


In this paper we present fast algorithms for computing β-skeletons


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Bentely and H. A. Maurer. A note on euclidean near neighbor searching in the plane. Inform. Process. Lett., 8:133–136, 1979.Google Scholar
  2. 2.
    M. Chang, C. Tang, and R. Lee. Solving the euclidean bottleneck matching problem by k-relative neighborhood graph. Algorithmica, 8:177–194, 1992.Google Scholar
  3. 3.
    J. W. Jaromczyk, M. Kowaluk, and F. Yao. An optimal algorithm for constructing β-skeletons in the l p metric. To be published in SIAM J. Computing.Google Scholar
  4. 4.
    D. G. Kirkpatrick and J. D. Radke. A framework for computational morphology. In G. T. Toussaint, editor, Computational Geometry, pages 217–248. North-Holland, 1985.Google Scholar
  5. 5.
    Andrzej Lingas. A linear-time construction of the relative neighborhood graph from the delaunay triangulation. Comput. Geom. Theory Appl., 4:199–208, 1994.Google Scholar
  6. 6.
    Andy Mirzaian. Minimum weight euclidean matching and weighted relative neighborhood graphs. In Proc. 3rd Workshop Algorithms Data Struct., volume 709 of Lecture Notes Comput. Sci., pages 506–517, 1993.Google Scholar
  7. 7.
    F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer, New York, 1985.Google Scholar
  8. 8.
    S. V. Rao and Asish Mukhopadhyay. Output-sensitive algorithm for computing β-skeleton. manuscript, 1997.Google Scholar
  9. 9.
    T. H. Su and R. Ch. Chang. The k-gabriel graphs and their applications. In Proc. Int. Symp., SIGAL '90, pages 66–75, 1990.Google Scholar
  10. 10.
    T. H. Su and R. Ch. Chang. Computing the k-relative neighborhood graphs in euclidean plane. Pattern Recogn., 24:231–239, 1991.Google Scholar
  11. 11.
    G. T. Toussaint. The relative neighborhood graph of a finite planar set. Pattern Recogn., 12:261–268, 1980.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • S. V. Rao
    • 1
  • Asish Mukhopadhyay
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations