Skip to main content

Precision and robustness in geometric computations

  • Chapter
  • First Online:
Algorithmic Foundations of Geographic Information Systems (CISM School 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1340))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974.

    Google Scholar 

  2. G. Alefeld and J. Herzberger. Introduction to Interval Computation. Academic Press, New York, 1983.

    Google Scholar 

  3. F. Avnaim. C++GAL: A C++ Library for Geometric Algorithms, 1994.

    Google Scholar 

  4. F. Avnaim, J.D. Boissonnat, O. Devillers, F.P. Preparata, and M. Yvinec. Evaluating signs of determinants using single precision arithmetic. Technical Report 2306, INRIA Sophia-Antipolis, 1994.

    Google Scholar 

  5. J.E. Baker, R. Tamassia, and L. Vismara. GeomLib: Algorithm engineering for a geometric computing library, 1997. (Preliminary report).

    Google Scholar 

  6. J.L. Barber. Computational geometry with imprecise data and arithmetic: Phd Thesis. Technical Report CS-TR-377-92, Princeton University, 1992.

    Google Scholar 

  7. M.O. Benouamer, P. Jaillon, D. Michelucci, and J-M. Moreau. A “lazy” solution to imprecision in computational geometry. In Proc. of the 5th Canad. Conf. on Camp. Geom., pages 73–78, 1993.

    Google Scholar 

  8. J.D. Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge University Press, Cambridge, UK, 1997.

    Google Scholar 

  9. H. Brönnimann, I.Z. Emiris, V.Y. Pan, and S. Pion. Computing exact geometric predicates using modular arithmetic with single precision. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 174–182, 1997.

    Google Scholar 

  10. H. Brönnimann and M. Yvinec. Efficient exact evaluation of signs of determinants. In Proc. 13th Annu. AGM Sympos. Comput. Geom., pages 166–173, 1997.

    Google Scholar 

  11. C. Burnikel. Exact Computation of Voronoi Diagrams and Line Segment Intersections. PhD Thesis, Universität des Saarlandes, Saarbrücken, Germany, 1996.

    Google Scholar 

  12. C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily computable separation bound for arithmetic expressions involving square roots. In Proc. of the 8th ACM-SIAM Symp. on Discrete Algorithms, pages 702–709, 1997.

    Google Scholar 

  13. C. Burnikel, J. Könemann, K. Mehlhorn, S. Näher, S. Schirra, and C. Uhrig. Exact geometric computation in LEDA. In Proceedings of the 11 th ACM Symposium on Computational Geometry, pages C18–C19, 1995.

    Google Scholar 

  14. C. Burnikel, K. Mehlhorn, and S. Schirra. How to compute the Voronoi diagram of line segments: Theoretical and experimental results. In ESA94, pages 227–239, 1994.

    Google Scholar 

  15. C. Burnikel, K. Mehlhorn, and S. Schirra. On degeneracy in geometric computations. In Proc. of the 5th ACM-SIAM Symp. on Discrete Algorithms, pages 16–23, 1994.

    Google Scholar 

  16. C. Burnikel, K. Mehlhorn, and S. Schirra. The LEDA class real number. Technical Report MPI-I-96-1-001, Max-Planck-Institut für Informatik, 1996.

    Google Scholar 

  17. J.F. Canny. The Complexity of Robot Motion Planning. PhD Thesis, 1987.

    Google Scholar 

  18. J.F. Canny. Generalised characteristic polynomials. J. Symbolic Computation, 9:241–250, 1990.

    Google Scholar 

  19. Wei Chen, Koichi Wada, and Kimio Kawaguchi. Parallel robust algorithms for constructing strongly convex hulls. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 133–140, 1996.

    Google Scholar 

  20. N.R. Chrisman. The accuracy of map overlays: a reassessment. In D.J. Peuquet and D.F. Marble, editors, Introductory Readings in Geographic Information Systems, pages 308–320. Taylor & Francis, London, 1990.

    Google Scholar 

  21. K. L. Clarkson. Safe and effective determinant evaluation. In Proc. 33rd Annu. IEEE Sympos. Found. Comput. Sci., pages 387–395, 1992.

    Google Scholar 

  22. J.L.D. Comba and J. Stolfi. Affine arithmetic and its applications to computer graphics, 1993. Presented at SIBGRAPI'93, Recife (Brazil), October 20–22.

    Google Scholar 

  23. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry. Springer Verlag, 1997.

    Google Scholar 

  24. P. de Rezende and W. Jacometti. Geolab: An environment for development of algorithms in computational geometry. In Proc. 5th Canad. Conf. Comput. Geom., pages 175–180, Waterloo, Canada, 1993.

    Google Scholar 

  25. T.J. Dekker. A floating-point technique for extending the available precision. Numerische Mathematik, 18:224–242, 1971.

    Google Scholar 

  26. T.K. Dey, K. Sugihara, and C.L. Bajaj. Delaunay triangulations in three dimensions with finite precision arithmetic. Computer Aided Geometric Design, 9:457–470, 1992.

    Google Scholar 

  27. D. Douglas. It makes me so CROSS. In D.J. Peuquet and D.F. Marble, editors, Introductory Readings in Geographic Information Systems, pages 303–307. Taylor & Francis, London, 1990.

    Google Scholar 

  28. T. Dubé, K. Ouchi, and C.K. Yap. Tutorial for Real/Expr package. 1996.

    Google Scholar 

  29. T. Dubé and C.K. Yap. A basis for implementing exact computational geometry. extended abstract, 1993.

    Google Scholar 

  30. H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Verlag, 1986.

    Google Scholar 

  31. H. Edelsbrunner and E. Mücke. Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms. ACM Trans. on Graphics, 9:66–104, 1990.

    Google Scholar 

  32. I. Emiris and J. Canny. A general approach to removing degeneracies. In Proceedings of the 32nd IEEE Symposium on Foundations of Computer Sience, pages 405–413, 1991.

    Google Scholar 

  33. I. Emiris and J. Canny. An efficient approach to removing geometric degeneracies. In Proc. of the 8th ACM Symp. on Computational Geometry, pages 74–82, 1992.

    Google Scholar 

  34. A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. The CGAL kernel: a basis for geometric computation. In Ming C. Lin and Dinesh Manocha, editors, Applied Computational Geometry: Towards Geometric Engineering (WACG96), pages 191–202. Springer LNCS 1148, 1996.

    Google Scholar 

  35. S. Fang and B. Brüderlin. Robustness in geometric modeling — tolerance based methods. In Proc. Workshop on Computational Geometry CG'91, pages 85–102. Springer Verlag LNCS 553, 1991.

    Google Scholar 

  36. A. R. Forrest. Computational geometry in practice. In R. A. Earnshaw, editor, Fundamental Algorithms for Computer Graphics, volume F17 of NATO ASI, pages 707–724. Springer-Verlag, 1985.

    Google Scholar 

  37. S. Fortune. Stable maintenance of point-set triangulations in two dimensions. In Proceedings of the 30th IEEE Symposium on Foundations of Computer Sience, pages 494–499, 1989.

    Google Scholar 

  38. S. Fortune. Progress in computational geometry. In R. Martin, editor, Directions in Geometric Computing, pages 81–128. Information Geometers Ltd., 1993.

    Google Scholar 

  39. S. Fortune. Numerical stability of algorithms for 2D Delaunay triangulations and Voronoi diagrams. Int. J. Computational Geometry and Applications, 5:193–213, 1995.

    Google Scholar 

  40. S. Fortune and V. Milenkovic. Numerical stability of algorithms for line arrangements. In Proc. of the 7th ACM Symp. on Computational Geometry, pages 334–341, 1991.

    Google Scholar 

  41. S. Fortune and C. van Wyk. Efficient exact arithmetic for computational geometry. In Proc. of the 9th ACM Symp. on Computational Geometry, pages 163–172, 1993.

    Google Scholar 

  42. S. Fortune and C. van Wyk. LN user manual, 1993.

    Google Scholar 

  43. S. Fortune and C. Van Wyk. Static analysis yields efficient exact integer arithmetic for computational geometry. ACM Transactions on Graphics, 15(3):223–248, 1996.

    Google Scholar 

  44. W.R. Franklin. Cartographic errors symptomatic of underlying algebra problems. In Proc. International Symposium on Spatial Data Handling, volume 1, pages 190–208, Zürich, 20-24 August 1984.

    Google Scholar 

  45. G.-J. Giezeman. PlaGeo, a library for planar geometry, and SpaGeo, a library for spatial geometry, 1994.

    Google Scholar 

  46. D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys, pages 5–48, 1991.

    Google Scholar 

  47. M.F. Goodchild. Issues of quality and uncertainty. In J.C. Muller, editor, Advances in Cartography, pages 113–139. Elsevier Applied Science, London, 1991.

    Google Scholar 

  48. M. Goodrich, L. Guibas, J. Hershberger, and P. Tanenbaum. Snap rounding line segments efficiently in two and three dimensions. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 284–293, 1997.

    Google Scholar 

  49. T. Granlund. GNU MP, The GNU Multiple Precision Arithmetic Library, 2.0.2 edition, June 1996.

    Google Scholar 

  50. D. Greene and F. Yao. Finite resolution computational geometry. In Proc. of the.27th IEEE Symposium on Foundations of Computer Science, pages 143–152, 1986.

    Google Scholar 

  51. L. Guibas and D. Marimont. Rounding arrangements dynamically. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages 190–199, 1995.

    Google Scholar 

  52. L. Guibas, D. Salesin, and J. Stolfi. Epsilon geometry: Building robust algorithms from imprecise computations. In Proc. of the 5th ACM Symp. on Computational Geometry, pages 208–217, 1989.

    Google Scholar 

  53. L. Guibas, D. Salesin, and J. Stolfi. Constructing strongly convex approximate hulls with inaccurate primitives. In Proc. SIGAL Symp. on Algorithms, pages 261–270, Tokyo, 1990.

    Google Scholar 

  54. K. Hinrichs, J. Nievergelt, and P. Schorn. An all-round sweep algorithm for 2dimensional nearest-neighbor problems. Acta Informatioa, 29:383–394, 1992.

    Google Scholar 

  55. J.D. Hobby. Practical line segment interscetion with finite precision output. Technical Report 93/2-27, Bell Laboratories (Lucent Technologies), 1993.

    Google Scholar 

  56. C.M. Hoffmann. The problem of accuracy and robustness in geometric computation. IEEE Computer, pages 31–41, March 1989.

    Google Scholar 

  57. C.M. Hoffmann, J.E. Hopcroft, and M.S. Karasick. Towards implementing robust geometric computations. In Proc. of the 4th ACM Symp. on Computational Geometry, pages 106–117, 1988.

    Google Scholar 

  58. J.E. Hopcroft and P.J. Kahn. A paradigm for robust geometric algorithms. Algorithmica, 7:339–380, 1992.

    Google Scholar 

  59. K. Jensen and N. Wirth. PASCAL-User Manual and Report. Revised for the ISO Pascal Standard. Springer Verlag, 3rd edition, 1985.

    Google Scholar 

  60. S. Kahan and J. Snoeyink. On the bit complexity of minimum link paths: Superquadratic algorithms for problems solvable in linear time. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 151–158, 1996.

    Google Scholar 

  61. M. Karasick, D. Lieber, and L.R. Nackman. Efficient Delaunay triangulation using rational arithmetic. ACM Transactions on Graphics, 10(1):71–91, 1991.

    Google Scholar 

  62. R. Klein. Algorithmische Geometrie. Addison-Wesley, 1997. (in German).

    Google Scholar 

  63. A. Knight, J. May, M. McAffer, T. Nguyen, and J.-R. Sack. A computational geometry workbench. In Proc. 6th Annu. ACM Sympos. Comput. Geom., page 370, 1990.

    Google Scholar 

  64. D.E. Knuth. The Art of Computer Programming Vol. 2: Seminumerical Algorithms. Addison-Wesley, 2nd edition, 1981.

    Google Scholar 

  65. Donald E. Knuth. Axioms and Hulls, volume 606 of Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, Germany, 1992.

    Google Scholar 

  66. M.J. Laszlo. Computational geometry and computer graphics in C++. Prentice Hall, Upper Saddle River, NJ, 1996.

    Google Scholar 

  67. Z. Li and V. Milenkovic. Constructing strongly convex hulls using exact or rounded arithmetic. Algorithmica, 8:345–364, 1992.

    Google Scholar 

  68. LIDIA-Group, Fachbereich Informatik Institut für Theoretische Informatik TH Darmstadt. LiDlA Manual A library for computational number theory, 1.3 edition, April 1997.

    Google Scholar 

  69. G. Liotta, F. Preparata, and R. Tamassia. Robust proximity queries: An illustration of degree-driven algorithm design. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 156–165, 1997.

    Google Scholar 

  70. K. Mehlhorn. Data Structures and Algorithms 3: Multi-dimensional Searching and Computational Geometry. Springer Verlag, 1984.

    Google Scholar 

  71. K. Mehlhorn and S. Näher. Implementation of a sweep line algorithm for the straight line segment intersection problem. Technical Report MPI-I-94-160, Max-Planck-Institut für Informatik, 1994.

    Google Scholar 

  72. K. Mehlhorn and S. Näher. The implementation of geometric algorithms. In 13th World Computer Congress IFIP94, volume 1, pages 223–231. Elsevier Science B.V. North-Holland, Amsterdam, 1994.

    Google Scholar 

  73. K. Mehlhorn and S. Näher. LEDA, a platform for combinatorial and geometric computing. Communications of the ACM, 38:96–102, 1995.

    Google Scholar 

  74. K. Mehlhorn, S. Näher, and C. Uhrig. The LEDA User manual, 3.5 edition, 1997. cf.http://www.mpi-sb.mpg.de/LEDA/leda.html.

    Google Scholar 

  75. M. Mignotte. Identification of algebraic numbers. Journal of Algorithms, 3:197–204, 1982.

    Google Scholar 

  76. M. Mignotte. Mathematics for Computer Algebra. Springer Vertag, 1992.

    Google Scholar 

  77. V. Milenkovic. Verifiable implementations of geometric algorithms using finite precision arithmetic. Artificial Intelligence, 37:377–401, 1988.

    Google Scholar 

  78. V. Milenkovic and L. R. Nackman. Finding compact coordinate representations for polygons and polyhedra. In Proc. 6th Annu. ACM Sympos. Comput. Geom., pages 244–252, 1990.

    Google Scholar 

  79. R.E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1966.

    Google Scholar 

  80. R.E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadelphia, 1979.

    Google Scholar 

  81. S.P. Mudur and P.A. Koparkar. Interval methods for processing geometric objects. IEEE Computer Graphics and Applications, 4(2):7–17, 1984.

    Google Scholar 

  82. K. Mulmuley. Computational Geometry: An Introduction through Randomized Algorithms. Prentice Hall, Englewood Cliffs, NJ, 1994.

    Google Scholar 

  83. J. Nievergelt and K. H. Hinrichs. Algorithms and Data Structures: with Applications to Graphics and Geometry. Prentice Hall, Englewood Cliffs, NJ, 1993.

    Google Scholar 

  84. J. Nievergelt and P. Schorn. Das Rätsel den verzopften Geraden. Informatik Spektrum, (11):163–165, 1988. (in German).

    Google Scholar 

  85. J. Nievergelt, P. Schorn, M. de Lorenzi, C. Ammann, and A. Brüngger. XYZ: Software for geometric computation. Technical Report 163, Institut für Theorische Informatik, ETH, Zürich, Switzerland, 1991.

    Google Scholar 

  86. J. O'Rourke. Computational geometry in C. Cambridge University Press, Cambridge, 1994.

    Google Scholar 

  87. T. Ottmann, G. Thiemt, and C. Ullrich. Numerical stability of geometric algorithms. In Proc. of the 3rd ACM Symp. on Computational Geometry, pages 119–125, 1987.

    Google Scholar 

  88. K. Ouchi. Real/Expr: Implementation of exact computation, 1997.

    Google Scholar 

  89. M. Overmars. Designing the computational geometry algorithms library CGAL. In Ming C. Lin and Dinesh Manocha, editors, Applied Computational Geometry: Towards Geometric Engineering (WACG96), pages 53–58. Springer LNCS 1148, 1996.

    Google Scholar 

  90. J. Perkal. On epsilon length. Bulletin de l'Académie Polonaise des Sciences, 4:399–403, 1956.

    Google Scholar 

  91. F. Preparata and M.I. Sharnos. Computational Geometry. Springer Verlag, 1985.

    Google Scholar 

  92. D.M. Priest. Algorithms for arbitrary precision floating point arithmetic. In 10th Symposium on Computer Arithmetic, pages 132–143. IEEE Computer Society Press, 1991.

    Google Scholar 

  93. D.M. Priest. On Properties of Floating-Point Arithmetic: Numerical Stability and the Cost of Accurate Computations. PhD Thesis, Department of Mathematics, University of California at Berkeley, 1992.

    Google Scholar 

  94. D. Pullar. Spatial overlay with inexact numerical data. In Proc. of Auto-Carto 10, pages 313–329, 1991.

    Google Scholar 

  95. D. Pullar. Consequences of using a tolerance paradigm in spatial overlay. In Proc. of Auto-Carto 11, pages 288–296, 1993.

    Google Scholar 

  96. P. Schorn. An object-oriented workbench for experimental geometric computation. In Proc. 2nd Canad. Conf. Comput. Geom., pages 172–175, 1990.

    Google Scholar 

  97. P. Schorn. Robust Algorithms in a Program Library for Geometric Algorithms. PhD Thesis, Informatik-Dissertationen ETH Zürich, 1991.

    Google Scholar 

  98. P. Schorn. An axiomatic approach to robust geometric programs. J. Symbolic Computation, 16:155–165, 1993.

    Google Scholar 

  99. P. Schorn. Degeneracy in geometric computation and the perturbation approach. The Computer Journal, 37(1):35–42, 1994.

    Google Scholar 

  100. R. Seidel. The nature and meaning of perturbations in geometric computations. In STACS94, 1994.

    Google Scholar 

  101. B. Serpette, J. Vuillemin, and J.C. Hervé. BigNum, a portable and efficient package for arbitrary-precision arithmetic. Technical Report 2, Digital Paris Research Laboratory, 1989.

    Google Scholar 

  102. J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric predicates. Technical Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon University, 1996.

    Google Scholar 

  103. J. R. Shewchuk. Triangle: Engineering a 2D quality mesh generator and delaunay triangulator. In Ming C. Lin and Dinesh Manocha, editors, Applied Computational Geometry: Towards Geometric Engineering (WACG96), pages 203–222, 1996.

    Google Scholar 

  104. IEEE Standard. 754-1985 for binary floating-point arithmetic. SIGPLAN, 22:9–25, 1987.

    Google Scholar 

  105. K.G. Suffern and E.D. Fackerell. Interval methods in computer graphics. Computers & Graphics, 15(3):331–340, 1991.

    Google Scholar 

  106. K. Sugihara. On finite-precision representations of geometric objects. J. Comput. Syst. Sci., 39:236–247, 1989.

    Google Scholar 

  107. K. Sugihara. A simple method for avoiding numerical errors and degeneracies in Voronoi diagram construction. IEICE Trans. Fundamentals, E75-A(4):468–477, 1992.

    Google Scholar 

  108. K. Sugihara and M. Iri. Construction of the Voronoi diagram for over 105 generators in single-precision arithmetic. In Abstracts 1st Canad. Conf. Comput. Geom., page 42, 1989.

    Google Scholar 

  109. K. Sugihara and M. Iri. A solid modelling system free from topological inconsistency. Journal of Information Processing, 12(4):380–393, 1989.

    Google Scholar 

  110. C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O'Rourke, editors, CRC Handbook in Computational Geometry. CRC Press. (to appear).

    Google Scholar 

  111. C. K. Yap and T. Dubé. The exact computation paradigm. In D.Z. Du and F. Hwang, editors, Computing in Euclidean Geometry, pages 452–492. World Scientific Press, 1995. 2nd edition.

    Google Scholar 

  112. C.K. Yap. A geometric consistency theorem for a symbolic perturbation scheme. In Proc. of the 4th ACM Symp. on Computational Geometry, pages 134–141, 1988.

    Google Scholar 

  113. C.K. Yap. Symbolic treatment of geometric degeneracies. J. Symbolic Comput., 10:349–370, 1990.

    Google Scholar 

  114. C.K. Yap. Towards exact geometric computation. Computational Geometry: Theory and Applications, 7(1-2):3–23, 1997. Preliminary version appeared in Proc. of the 5th Canad. Conf. on Comp. Geom., pages 405–419, (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marc van Kreveld Jürg Nievergelt Thomas Roos Peter Widmayer

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schirra, S. (1997). Precision and robustness in geometric computations. In: van Kreveld, M., Nievergelt, J., Roos, T., Widmayer, P. (eds) Algorithmic Foundations of Geographic Information Systems. CISM School 1996. Lecture Notes in Computer Science, vol 1340. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63818-0_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-63818-0_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63818-6

  • Online ISBN: 978-3-540-69653-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics