Logical updating of object class structures

  • Dimitri Theodoratos
Database Updates
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1341)


We consider Object Oriented schemas supporting isa relationships and multiple inheritance extended with features from semantic modeling such as disjointness of classes and class intersection inclusion into other classes as well as negations of these statements. We provide an advisor that supplies the user with possible update alternatives when trying to modify the schema. Formally we investigate the problem of updating object class structures formalized as first order monadic theories. We show the problem to be co-NP-complete in general. Based on a formal system, we provide incremental update algorithms. By introducing a rule-goal (hyper)graph, non-trivial conditions are presented in different cases which guarantee the problem's reduction to the polynomial level.


Logic Monadic theory Object class structure Incremental updating Algorithms Complexity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Abiteboul and A. Bonner. Object and views. In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pages 238–247, 1991.Google Scholar
  2. 2.
    P. Atzeni and D. S. Parker. Set containment inference and syllogisms. Theoretical Computer Science, 62:39–65, 1988.CrossRefGoogle Scholar
  3. 3.
    G. Ausiello, A. D'Atri, and D. Saccà. Graph algorithms for functional dependency manipulation. Jour. of the ACM, 30(4):752–766, Oct. 1983.CrossRefGoogle Scholar
  4. 4.
    G. Ausiello, A. D'Atri, and D. Saccà. Minimal representation of directed hypergraphs. SIAM Jour. on comp., 15(2):418–431, May 1986.CrossRefGoogle Scholar
  5. 5.
    A. Borgida. Language features for flexible handling of exceptions in information systems. ACM Trans. Database Syst., 10:563–603, 1985.CrossRefGoogle Scholar
  6. 6.
    M. Cadoli, F. M. Donini, P. Liberatore, and M. Schaerf. The size of a revised knowledge base. In Proc. of the ACM Symp. on Principles of Database Systems, 1995.Google Scholar
  7. 7.
    D. Calvanese and M. Lenzerini. Making object-oriented schemas more expressive. In Proc. of the Intl. Conf. on Principles of Database Systems, pages 243–254, 1994.Google Scholar
  8. 8.
    M. Dalal. Updates in propositional databases. Technical Report DCS-TR-222, Department of Computer Science, Rutgers Univ., Feb. 1988.Google Scholar
  9. 9.
    W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiablity of propositional Horn formulae. J. Logic Programming, 3:267–284, 1984.CrossRefGoogle Scholar
  10. 10.
    T. Eiter and G. Gottlob. On the complexity of propositional knowledge base revision, updates, and counterfactuals. Artif. Intell., 57:227–270, 1992.CrossRefGoogle Scholar
  11. 11.
    R. Fagin, G. M. Kuper, J. Ullman, and M. Vardi. Updating logical databases. In P. Kanellakis and F. Preparata, editors, Advances in computing Research, volume 3, pages 1–18. JAI Press, Greenwhich, CT, 1986.Google Scholar
  12. 12.
    R. Fagin, J. Ullman, and M. Vardi. On the semantics of updates in databases. In Proc. Second ACM Symp. on Principles of Database Systems, Atlanta, GA, pages 352–365, 1983.Google Scholar
  13. 13.
    K. D. Forbus. Introducing actions into qualitative simulation. In Proc. MCAI-89, pages 1273–1278, 1989.Google Scholar
  14. 14.
    M. Garey and D. S. Jonhson. Computers and intractability — A Guide to the Theory of NP-completness. Freeman, New York, 1979.Google Scholar
  15. 15.
    M. L. Ginsberg. Counterfactuals. Artif. Intell., 30:35–79, 1986.CrossRefGoogle Scholar
  16. 16.
    R. Hull and R. King. Semantic Database Modeling: Survey, Applications and Research issues. ACM Computing Surveys, 19(3):201–260, 1987.CrossRefGoogle Scholar
  17. 17.
    M. Lenzerini. Class hierachies and their complexity. In F. Bancilhon and P. Buneman, editors, Advances in Database Programming Languages, pages 43–65. ACM Press, Frontier Series, 1990.Google Scholar
  18. 18.
    B. Nebel. A knowledge level analysis of belief revision. In Proc. of the First Intl. Conf. on Principles of Knowledge Representation and Reasoning, Toronto, Ontario, pages 301–311, 1989.Google Scholar
  19. 19.
    B. Nebel. Belief revision and default reasoning: syntax based approaches. In Proc. of the Second Intl. Conf, on Principles of Knowledge Representation and Reasoning, pages 417–428, 1991.Google Scholar
  20. 20.
    K. Satoh. Nonmonotonic reasoning by minimal belief revision. In Proc. Intl. Conf. on Fifth Generation Computer Systems, pages 455–462, 1988.Google Scholar
  21. 21.
    D. Theodoratos. Deductive object-oriented schemas. In Proc. of the 15th Intl. Conference on Conceptual Modeling — ER'96, pages 58–72. Springer-Verlag, LNCS 1157, 1996.Google Scholar
  22. 22.
    J. D. Ullman. Principles of Database and Knowledge-Base Systems, volume 1. Computer Science Press, 1988.Google Scholar
  23. 23.
    E. Waller. Schema updates and consistency. In Proc. of 2nd Intl. Conf. on Deductive and Object Oriented Databases, pages 167–188, 1991.Google Scholar
  24. 24.
    A. Weber. Updating propositional formulas. In Proc. of the First Conf on Expert Database Systems, pages 487–500, 1986.Google Scholar
  25. 25.
    M. Winslett Wilkins. Reasoning about action using a possible models approach. In Proc. AAAI-88, St. Paul, MN, pages 89–93, 1988.Google Scholar
  26. 26.
    M. Winslett Wilkins. Updating logical databases. Cambridge University Press, Cambridge, England, 1990.Google Scholar
  27. 27.
    R. Zicari. A framework for schema updates in an object-oriented database system. In F. Bancilhon, C. Delobel, and P. Kanellakis, editors, Building an Object Oriented Database system, the story of O2, pages 146–182. Morgan Kaufmann Publishers, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Dimitri Theodoratos
    • 1
  1. 1.Department of Electrical and Computer EngineeringComputer Science Division National Technical University of AthensAthensGreece

Personalised recommendations