Offering parallelism to a sequential database management system on a network of workstations using PVM

  • Matthieu Exbrayat
  • Harald Kosch
6 Applications in Science and Engineering
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1332)


The considerable growth of on-line document searching and consulting brings much of the data providers to reconsider their database management systems (DBMS) capacities. Parallel DBMS then appear as a good solution, but the involved changes in administration and cost limit their breakthrough. To overcome these drawbacks, we propose an hybrid structure, which adapts a parallel extension to an existing DBMS. This extension cuts down the amount of work of the sequential DBMS, by parallelizing the incoming queries over a network of workstations communicating with PVM.


Parallelism Networks of Workstations Relational Databases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. DeWitt and J. Gray, “Parallel Database Systems: The Future of High Performance Database Systems,” Communications of the ACM, vol. 35, pp. 85–98, June 1992.CrossRefGoogle Scholar
  2. 2.
    D. Schneider and D. DeWitt, “A Performance Evaluation of Four Parallel Algorithms in a Shared-Nothing Multiprocessor Environment,” in Proceedings of the ACM SIGMOD International Conference on Management of Data, (Portland, Oregon, USA), June 1989.Google Scholar
  3. 3.
    W. Hasan and R. Motwani, “Coloring Away Communication in Parallel Query Optimization,” in Proceedings of the 21st VLDB Conference, (Zurich, Switzerland), pp. 36–47, 1995.Google Scholar
  4. 4.
    D. Chamberlin and F. Schmuck, “Dynamic Data Distribution (D3) in a Shared-Nothing Multiprocessor Data Store,” in Proceedings of the 18th VLDB Conference, (Vancouver, British Columbia, Canada), 1992.Google Scholar
  5. 5.
    L. Chen, D. Rotem, and S. Seshadri, “Declustering Databases on Heterogeneous Disk Systems.,” in Proceedings of the 21st VLDB Conference, (Zurich, Switzerland), 1995.Google Scholar
  6. 6.
    X. Zhang and Y. Song, The State-of-the-art in Performance Modeling and Simulation: Computer and Communication Networks, ch. 4, An integrated approach of performance prediction on networks of workstations. K. Bagchi, J. Walrand and G. Zobrist, Eds, Gordon and Breach, 1996.Google Scholar
  7. 7.
    M. G. et al., PVM: Parallel Virtual Machine. Cambridge: USA: MIT Press, 1994.Google Scholar
  8. 8.
    D. Schneider, D. DeWitt, J. Naughton, and S. Seshardi, “Practical Skew Handling in Parallel Joins,” in Proceedings of the 18th VLDB Conference, (Vancouver, British Columbia), Aug. 1992.Google Scholar
  9. 9.
    F. Douglis and J. Ousterhout, “Transparent Process Migration: Design Alternatives and the Sprite Implementation,” Software — Practice and Experience, vol. 21, pp. 757–785, Aug. 1991.Google Scholar
  10. 10.
    G. Bozas, M. Jaedicke, A. Listl, B. Mitschang, A. Reiser, and S. Zimmermann, “On Transforming a Sequential SQL DBMS into a Parallel One: First Results and Experiences of the MIDAS Project,“ in EUROPAR'96 (Springer, ed.), no. 1124 in LLNCS, pp. 881–887, Aug. 1996.Google Scholar
  11. 11.
    G. Graefe and D. L. Davison, “Encapsulation of parallelism and architecture independance in extensible database query processing,” IEEE Transactions on Software Engineering, vol. 19, July 1993.Google Scholar
  12. 12.
    N. Papakostas, G. Papakonstantinou, and P. Tsanakas, “PPARDB/PVM: A Portable PVM Based Parallel Database Management System,” in ACPC 96 Conference Series (S. Verlag, ed.), vol. LNCS 1127, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Matthieu Exbrayat
    • 1
  • Harald Kosch
    • 2
  1. 1.Laboratoire d'Ingénierie des Systèmes d'InformationInstitut National des Sciences Appliquées de LyonVilleurbanne Cedex
  2. 2.Laboratoire d'Informatique du ParallélismeEcole Normale Supérieure de LyonLyon Cedex 07

Personalised recommendations