Truncated block Newton and quasi-Newton methods for sparse systems of nonlinear equations. Experiments on parallel platforms

  • Giovanni Zilli
  • Luca Bergamaschi
5 Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1332)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arioli, M., Duff, I., Noailles, J., and Ruiz, D., A block projection method for sparse matrices, Siam J. Sci. Stat. Comput. 13 (1), 47–70, 1992.CrossRefGoogle Scholar
  2. 2.
    Bramley R., and Sameh, A., Row projections methods for large nonsymmetric linear systems, Siam J. Sci. Stat. Comput. 13 (1), 168–193, 1992.CrossRefGoogle Scholar
  3. 3.
    Dembo, R.S., and Steinhaug, T., Truncated Newton algorithms for large-scale unconstrained optimization, Series # 48, Yale University, New Haven, CT, September 1980.Google Scholar
  4. 4.
    Dembo, R.S., Eisenstat, S.C., and Steinhaug, T., Inexact Newton methods, SIAM. J. on Numeric. Anal. 19, 400–408, 1982.CrossRefGoogle Scholar
  5. 5.
    Matstoms, P, Parallel sparse QR factorization on shared memory architectures, Computing, 1994.Google Scholar
  6. 6.
    Paige, G.G., and Saunders, M.A., LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software 8, 43–71, 1982.CrossRefGoogle Scholar
  7. 7.
    Eisenstat, S.C., and Walker, H. F., Choosing the forcing terms in an inexact Newton method, SIAM. J. Sci Comput. 17-1, 16–32, 1996.CrossRefGoogle Scholar
  8. 8.
    Zilli, G., Parallel implementation of a row-projection method for solving sparse linear systems, Supercomputer 53, X-1, 33–43, 1993.Google Scholar
  9. 9.
    Zilli G., and Moret, I., Block Quasi-Newton method for sparse nonlinear systems of equations on a transputer network, in: W.F. Ames editor, IMACS '94 Proceedings, Late Papers Volume, (Atlanta, July 11–15, 1994) 112–114.Google Scholar
  10. 10.
    Zilli, G., Parallel method for sparse non-symmetric linear and non-linear systems of equations on a transputer network, Supercomputer 6, XII-4, 4–15, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Giovanni Zilli
    • 1
  • Luca Bergamaschi
    • 1
  1. 1.Dipartimento di Metodi e Modelli Matematici per le Scienze ApplicateUniversitá di PadovaPadovaItaly

Personalised recommendations