Cognitive requirements on making and interpreting maps

  • Thomas Barkowsky
  • Christian Freksa
Wayfinding and Map Interpretation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1329)


We present an approach to modeling human interpretation of (real) geographic maps. While in Geographic Information Systems (GIS) the limitations for describing geographic knowledge mainly stem from the limitations of this knowledge itself, paper maps pose additional constraints on the representation of spatial configurations. We examine maps as representation media with respect to cartographic restrictions involved in the map making process. Some cognitive factors of cartographic generalization are indicated. We present our aspect map approach allowing for describing maps formally as pictorial representations. The approach postulates the use of meta-knowledge to enable adequate map interpretation. Phenomena of cartographic interpretation and misinterpretation are illustrated employing two kinds of hierarchic structures of spatial aspects of maps. The notions we present can be employed in augmenting the ‘cognitive adequacy’ of automated map making and map reading.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bagrow, L. (1985). History of cartography. Chicago, Ill.: Precedent Publishers.Google Scholar
  2. Barkowsky, T., Freksa, C., Berendt, B., & Kelter, S. (in press). Aspektkarten — Integriert räumlich-symbolische Repräsentationsstrukturen. In C. Umbach, M. Grabski & R. Hörnig (Eds.), Perspektive in Sprache und Raum. Wiesbaden: Deutscher Universitätsverlag.Google Scholar
  3. Bertin, J. (1981). Graphics and graphic information processing. Berlin: de Gruyter.Google Scholar
  4. Eco, U. (1976). A theory of semiotics. Bloomington, Ind.: Indiana University Press.Google Scholar
  5. Egenhofer, M. J., & Mark, D. M. (1995). Naive geography. In A.U. Frank & W. Kuhn (Eds.), Spatial information theory. A theoretical basis for GIS. LNCS 988 (pp. 1–15). Berlin: Springer.Google Scholar
  6. Frank, A. U., & Timpf, S. (1994). Multiple representations for cartographic objects in a multi-scale tree — An intelligent graphical zoom. Computers & Graphics, 18(6), 823–829.Google Scholar
  7. Freksa, C., & Barkowsky, T. (1996). On the relation between spatial concepts and geographic objects. In P. Burrough & A. Frank (Eds.), Geographic objects with indeterminate boundaries (pp. 109–121). London: Taylor & Francis.Google Scholar
  8. Freksa, C., & Röhrig, R. (1993). Dimensions of qualitative spatial reasoning. In N. Piera Carretè & M. G. Singh (Eds.), Qualitative reasoning and decision technologies, Proc. QUARDET'93, CIMNE Barcelona 1993 (pp. 483–492).Google Scholar
  9. Hake, G., & Grünreich, D. (1994). Kartographie (7. Aufl.). Berlin, New York: de Gruyter.Google Scholar
  10. Head, C. G. (1991). Mapping as language or semiotic system: Review and comment. In D. M. Mark & A. U. Frank (Eds.), Cognitive and linguistic aspects of geographic space (pp. 237–262). Dordrecht, Boston, London: Kluwer Academic Publishers.Google Scholar
  11. Kanizsa, G. (1979). Organization in vision. New York: Praeger.Google Scholar
  12. Kosslyn, S. M. (1994). Elements of graph design. New York: Freeman.Google Scholar
  13. Lemon, O., & Pratt, I. (1996). Putting channels on the map: Imperfect infomation flow in a formal semantics of (geo)graphical information systems. Information theoretic approaches to logic, language, and computation. Proceedings of the 2nd Conference on Information Theoretic Approaches to Logic, Language, and Computation (ITALLC) (pp. 117–128). London Guildhall University: Department of Psychology.Google Scholar
  14. MacEachren, A. M. (1995). How maps work: representation, visualization, and design. New York, London: The Guilford Press.Google Scholar
  15. Monmonier, M. (1996). How to lie with maps (2nd ed.). Chicago: Univ. of Chicago Press.Google Scholar
  16. Montello, D. R. (1993). Scale and multiple psychologies of space. In A. Frank & I. Campari (Eds.), Spatial information theory: A theoretical basis for GIS. LNCS No. 7I6 (pp. 312–321). Berlin. Springer.Google Scholar
  17. Müller, J. C., Weibel, R., Lagrange, J. P., & Salgd, F. (1995). Generalization: State of the art and issues. In J. C. Müller, J. P. Lagrange, & R. Weibel (Eds.), GIS and generalization: Methodology and practice (pp. 3–17). London: Taylor & Francis.Google Scholar
  18. Palmer, S. E. (1978). Fundamental aspects of cognitive representation. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 259–303). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  19. Pratt, I. (1993). Map semantics. In A. Frank & I. Campari (Eds.), Spatial information theory: A theoretical basis for GIS (pp. 77–91). Berlin: Springer.Google Scholar
  20. Schlichtmann, H. (1985). Characteristic traits of the semiotic system ‘map symbolism'. The Cartographic Journal, 22, 23–30.Google Scholar
  21. Schlichtmann, H. (1991). Plan information and its retrieval in map interpretation: The view from semiotics. In D. M. Mark & A. U. Frank (Eds.), Cognitive and linguistic aspects of geographic space (pp. 263–284). Dordrecht, Boston, London: Kluwer Academic Publishers.Google Scholar
  22. Wang, D. (1995). Studies on the formal semantics of pictures. ILLC Dissertation Series 1995-4. Institute for Logic, Language and Computation, Universiteit van Amsterdam.Google Scholar
  23. Wood, D., & Fels, J. (1986). Designs on signs: Myth and meaning in maps. Cartographica, 23 (3), 54–103.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Thomas Barkowsky
    • 1
  • Christian Freksa
    • 1
  1. 1.Department of Computer Science and Doctoral Program in Cognitive ScienceUniversity of HamburgHamburgGermany

Personalised recommendations