Voronoï diagrams on line segments: Measurements for contextual generalization purposes

  • Jean-François Hangouët
  • Riam Djadri
Formal Models of Space
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1329)


Contextual generalization is the generalization of a group of geographic features, or of a single feature within its geographical environment. The positions of the features relatively one to the other have to be elicited before any generalization operation can be chosen and performed lest the rendering of the geographical meaning be defaced or misleading. The paper shows, through examples, that Voronoï diagrams on the segments constitutive of the polylines (as geographical features are stored in vector databases) provide a mathematically exact valuation of any feature's relation to its surroundings and thus proves reliably helpful for contextual generalization.


Automated Generalization Voronoï Diagrams 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ALT et al. 93]
    Approximate Matching of Polygonal Shapes, H. Alt, B. Behrends, J. Blömer, proceedings of the 7th ACM Symposium on Computational Geometry, pp. 186–193, 1991Google Scholar
  2. [BOISSONNAT et al. 95]
    Géométrie algorithmique, Jean-Daniel Boissonnat et Mariette Yvinec, Ediscience international, Paris 1995Google Scholar
  3. [CHASSERY et al. 91]
    Gèomètrie discrète en analyse d'images, Jean-Marc Chassery et Annick Montanvert, Hermès, Paris 1991Google Scholar
  4. [DJADRI 96]
    Diagrammes de Voronoï Gènèralisès, Riam Djadri, thèse de D.E.A. COGIT-Universitè de Marne-la-Vallée, 1996Google Scholar
  5. [EDWARDS et al. 95]
    Un modèle pivot pour la reprèsentation de l'espace basè sur les diagrammes de VoronoΪ: application aux descriptions d'itinèraires en langage naturel, G. Edwards, G. Ligozat, A. Gryl, L. Fraczak, B. Moulin et C.M. Gold, actes de CASSINI'95, Marseille 1995, pp. 1-27Google Scholar
  6. [FRITSCH 96]
    A Mechanical Approach of Generalization, Emmanuel Fritsch, proceedings of GisRUK'4, pp. 49–55, 1996.Google Scholar
  7. [GOLD 90]
    Space revisited: back to the basics, Christopher Gold, proceedings of Spatial Data Handling 1990, pp. 175–189Google Scholar
  8. [GOLD 91]
    Problem with handling spatial data — The Voronoï approach, C. Gold, CISM Journal ACSGC, vol. 45, n. 1, pp. 65–80 1991Google Scholar
  9. [HANGOUëT 95]
    Computation of the Hausdorff Distance Between Two Plane Vector Polylines, Jean-François Hangouë:et, proceedings of AutoCarto 12, Charlotte 1995, pp. 1–10Google Scholar
  10. [HANGOUëT 96]
    Automated Generalization Fed on Latent Geographical Phenomena, Jean-François Hangouët, proceedings of InterCarto2, Irkutsk pp. 125–128, 1996Google Scholar
  11. [JONES et al. 95]
    Map Generalization with a Triangulated Data Structure, M. Jones and G. Bundy and M. Ware, Cartography and GIS vol. 22, n. 4, october 1995 pp 317–331Google Scholar
  12. [LI et al. 95]
    Algebraic Models for Feature Displacement in the Generalization of Digital Map Data Using Morphological Techniques, Zhilin Li and Bo Su, Cartographica vol.32, n.3, pp.39–56, 1995Google Scholar
  13. [MACKANESS 94]
    Issues in resolving visual soatial conflicts in automated map design, W. Mackaness, proceedings of SDH'94 vo1.2 pp.612–621Google Scholar
  14. [MACKANESS 95]
    Analysis of Urban Road Networks to Support Cartographic Generalization W. Mackaness, Cartography and GIS vol. 22, n. 4, October 1995 pp. 306–316Google Scholar
  15. [McMASTER et al. 89]
    Cartographic Generalization in a Digital Environment: When and How to Generalize McMaster and Shea, proceedings of AutoCarto 9, pp. 56–67, 1989Google Scholar
  16. [MONIER 96]
    Relief modeling, a step for environmental mapping, Pascale Monier, proceedings of InterCarto 2, Irkutsk, pp. 129–132, 1996Google Scholar
  17. [MOLLER et al. 95]
    Generalization: state of the art and issues, in GIS and Generalization — Methodology and practice, J.C. Müller and R. Weibel and J.P. Lagrange and F. Salgé; Taylor & Francis, London 1995Google Scholar
  18. [OKABE et al. 92]
    Spatial Tesselations: Concepts and Applications of Voronoï Diagrams, A. Okabe and B. Boots and K. Sugihara, Wiley, New-York, 1992Google Scholar
  19. [O'ROURKE 95]
    Computational Geometry in C. Joseph O'Rourke, Cambridge University Press, 1995Google Scholar
  20. [PENG et al. 95]
    Voronoï Diagram and Delaunay Triangulation Supporting Automated Generalization, Wanning Peng and K. Sijmons and A. Brown, proceedings of ICA/ACI, Barcelona 1995 pp. 301–310Google Scholar
  21. [PLAZANET 96]
    Enrichissement des bases de données gèographiques: analyse de la gèomètrie des objets linèaires pour la gènèralisation cartographique (application aux routes) Corinne Plazanet, PhD thesis, Universitè de Marne-la-Vallée 1996 [REGNAULD 96] Recognition of building clusters for generalization, Nicolas Regnauld, proceedings of SDH'96 pp. 4B.1-4B.14Google Scholar
  22. [RUAS 95]
    Multiple paradigms for automating map generalization, Anne Ruas, proceedings of AutoCarto 12, Charlotte 1995, pp. 69–78Google Scholar
  23. [RUAS et al. 96]
    Strategies for automated generalization, Anne Ruas and Corinne Plazanet, proceedings of SDH'96 pp. 6.1–6.15Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Jean-François Hangouët
    • 1
  • Riam Djadri
    • 1
  1. 1.Cogit LaboratoryI.G.N.Saint-Mandè CèdexFrance

Personalised recommendations