Decision value oriented decomposition of data tables

  • Dominik Ślezak
Communications Session 6B Learning and Discovery Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1325)


The framework for decision value oriented decomposition of data tables is stated with examples of its applications to partially generalized reasoning. Operation of synthesis of information is introduced for distributed decision tables. Theoretical foundations are built on the basis of the main factors of quality of reasoning, by referring to rough set, Dempster-Shafer and statistical theories.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dempster A.P., Upper and lower probabilities induced from a multivalued mapping; Annals of Mathematical Statistics, 38, pp.325–339, 1967.Google Scholar
  2. 2.
    Nguyen S.H., Nguyen H.S., Skowron A., Searching for Features defined by Hyperplanes in Proceedings of the Ninth International Symposium on Methodologies for Information Systems ISMIS'96, Z.W. Rag, M. Michalewicz (eds.), June, Zakopane, Poland; Lecture Notes in AI 1079, Berlin, Springer Verlag, pp.366–375, 1996.Google Scholar
  3. 3.
    Nguyen S.H., Nguyen T.T., Polkowski L., Skowron A., Synak P., Wróblewski J., Decision Rules for Large Data Tables in Proceedings of Symposium on Modelling, Analysis and Simulation vol 1, Computational Engineering in Systems Applications CESA'96, July 9–12, Lille, France, pp.942–947, 1996.Google Scholar
  4. 4.
    Nguyen S.H., Polkowski L., Skowron A., Synak P., Wróblewski J., Searching for Approximate Description of Decision Classes in Proceedings of the Fourth International Workshop on Rough Sets, Fuzzy Sets and Machine Discovery RSFD'96, November 6–8, Tokyo, Japan; the University of Tokyo, pp. 153–161, 1996.Google Scholar
  5. 5.
    Pawlak Z., Rough Sets. Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Dordrecht, 1991.Google Scholar
  6. 6.
    Pawlak Z., Skowron A., Rough Membership Functions; Advances in the Dempster-Shafer Theory of Evidence, Yager R.R., Fedrizzi M., Kacprzyk J.(eds.), John Wiley & Sons, New York, pp.251–271, 1994.Google Scholar
  7. 7.
    Payne J.W., Bettman J.R., Johnson E.J., The Adaptive Decision Maker, Cambridge University Press, 1993.Google Scholar
  8. 8.
    Polkowski L., Skowron A., Rough mereology: a new paradigm for approximate reasoning in International Journal of Approximate Reasoning, in print.Google Scholar
  9. 9.
    Shafer G., A Mathematical Theory of Evidence, Princeton University Press, 1976.Google Scholar
  10. 10.
    Skowron A., Synthesis of Adaptive Decision Systems from Experimental Data; Proceedings of the Fifth Scandinavian Conference on Artificial Intelligence SCAI-95, Aamodt A., Komorowski J.(eds.), Amsterdam, IOS Press, pp.220–238, 1995.Google Scholar
  11. 11.
    Skowron A., Grzymala-Busse J., From Rough Set Theory to Evidence Theory in Advances in the Dempster-Shafer Theory of Evidence, Yager R.R., Fedrizzi M., Kacprzyk J.(eds.), John Wiley & Sons, New York, pp.193–236, 1994.Google Scholar
  12. 12.
    Skowron A., Rauszer C., The Discernibility Matrices and Functions in Information Systems in Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory, Slowinski R.(ed.), Kluwer, Dordrecht, pp.331–362, 1992.Google Scholar
  13. 13.
    Ślezak D., Approximate Reducts in Decision Tables; Proceedings of Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU 96, Granada, July 1–5, Universidad de Granada, pp.1159–1164, 1996.Google Scholar
  14. 14.
    Vapnik V., Estimation of Dependencies Based on Empirical Data, Springer Series in Statistics, Springer-Verlag, 1982.Google Scholar
  15. 15.
    Wasserman L.A., Belief Functions and Statistical Inference; The Canadian Journal of Statistics Vol.18, No.3, pp.183–196, 1990.Google Scholar
  16. 16.
    Wróblewski J., Finding minimal reducts using genetic algorithms in Proceedings of the Second Annual Joint Conference on Information Sciences, September 28–October 1, Wrightsville Beach, NC, pp.186–189, 1995.Google Scholar
  17. 17.
    Ziarko W., Variable Precision Rough Set Model; Journal of Computer and System Sciences, 40, pp.39–59, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Dominik Ślezak
    • 1
  1. 1.Institute of MathematicsWarsaw UniversityWarsawPoland

Personalised recommendations