Advertisement

Qualitative versus quantitative interpretation of the mathematical theory of evidence

  • M. A. Klopotek
  • S. T. Wierzchoń
Communications Session 5A Approximate Reasoning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1325)

Abstract

The paper presents a novel view of the Dempster-Shafer belief function as a measure of diversity in relational data bases. The Dempster rule of evidence combination corresponds to the join operator of the relational database theory. This rough-set based interpretation is qualitative in nature and can represent a number of belief function operators.

Keywords

Soft Computing Knowledge Representation and Integration Dempster-Shafer theory rough set theory relational databases qualitative interpretation of Dempster rule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beeri C., Fagin R., Maier D., Yannakakis Y.: On the desirability of acyclic database schemes, Journal of the Association for Computing Machinery, vol. 30, no 3, 1983, 479–513.Google Scholar
  2. 2.
    Delobel C.: Normalization and hierarchical dependencies in the relational data model, ACM Transactions on Database Systems, vol. 3, no 3, 1978, 201–222.Google Scholar
  3. 3.
    Dempster A.P.: Upper and lower probabilities induced by a multi-valued mapping. Ann. Math. Stat.. 38 (1967), 325–339.Google Scholar
  4. 4.
    Fagin R., Halpern J.Y.: Uncertainty, belief, and probability. Comput. Intell. 7 (1991), 160–173.Google Scholar
  5. 5.
    Klopotek M.A.: Interpretation of belief function in Dempster-Shafer Theory Foundations of Computing & Decision Sciences, Vol. 20 No 4, 1995, pp.287–306Google Scholar
  6. 6.
    Kyburg Jr H.E.: Bayesian and non-Bayesian evidential updating. Artificial Intelligence 31 (1987), 271–293.Google Scholar
  7. 7.
    Pearl J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Influence. Morgan and Kaufmann, 1988Google Scholar
  8. 8.
    Provan G.M.: A logic-based analysis of Dempster-Shafer Theory, International Journal of Approximate Reasoning 4 (1990), 451–495.Google Scholar
  9. 9.
    Ras, Z.W.: Query processing in distributed information systems, Fundamenta Informaticae Journal, Special Issue on Logics for Artificial Intelligence, IOS Press, Vol. XV, No. 3/4, 1991, 381–397Google Scholar
  10. 10.
    Ruspini E.H.: The logical foundation of evidential reasoning, Tech. Note 408, SRI International, Menlo Park, Calif. USA, 1986.Google Scholar
  11. 10.
    Ruspini E.H.: The logical foundation of evidential reasoning, Tech. Note 408, SRI International, Menlo Park, Calif. USA, 1986.Google Scholar
  12. 11.
    Shafer G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton, 1976.Google Scholar
  13. 12.
    Shafer G.: Belief functions: An introduction.In: Shafer G., Pearl J.,eds, Readings in Uncertain Reasoning. Morgan Kaufmann Pub.Inc., San Mateo CA, (1990), 473–482.Google Scholar
  14. 13.
    Shafer G., Srivastava R.: The Bayesian and Belief-Function Formalisms. A General Prospective for Auditing. In: Shafer G., Pearl J.,eds, Readings in Uncertain Reasoning. Morgan Kaufmann Pub.Inc., San Mateo CA, (1990), 482–521.Google Scholar
  15. 14.
    Shafer G.: Perspectives on the theory and practice of belief functions. International Journal of Approximate Reasoning 4 (1990), 323–362.Google Scholar
  16. 15.
    Shenoy P.P.: Conditional independence in valuation based systems. International Journal of Approximate Reasoning 109(1994)Google Scholar
  17. 16.
    Skowron A., Grzymala-Busse J.W.: From rough set theory to evidence theory. In:Yager R.R., Kasprzyk J. and Fedrizzi M., eds, Advances in the Dempster-Shafer Theory of Evidence. J. Wiley, New York (1994), 193–236.Google Scholar
  18. 17.
    Smets Ph.: Resolving misunderstandings about belief functions. International Journal of Approximate Reasoning 6 (1992), 321–344.Google Scholar
  19. 18.
    Wasserman L.: Comments on Shafer's “Perspectives on the theory and practice of belief functions”. International Journal of Approximate Reasoning 6 (1992),367–375.Google Scholar
  20. 19.
    Vang A.: SQL and Relational Databases. Microtrend Books, Slawson Communications Inc., 1991Google Scholar
  21. 20.
    Wierzchoń S.T.: On plausible reasoning, in: M.M.Gupta, T.Yamakawa eds.: Fuzzy Logic in Knowledge Based Systems, Decision and Control, North-Holland Amsterdam, 1988, 133–152.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • M. A. Klopotek
    • 1
  • S. T. Wierzchoń
    • 1
  1. 1.Institute of Computer SciencePolish Academy of SciencesWarszawaPoland

Personalised recommendations