Advertisement

Formalizing requirements for distributed systems with trace diagrams

  • Stephan Kleuker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1313)

Abstract

Graphical formalisms can be useful to bridge the gap between informal requirements written by application experts and formal requirements used by formal methods experts. Trace diagrams are a new graphical formalism that was developed during several case studies in the telecommunications area to express relations between allowed and disallowed sequences of communications. This paper introduces the graphical and textual syntax as well as its formal semantics. It is shown that trace diagrams can easily be extended at the informal and formal level to serve other applications.

Keywords

Free Variable Line Number Critical Section Regular Language Linear Temporal Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Alpern and F.B. Schneider, Defining Liveness, Information Processing Letters, 21(4), 181–185,1985MathSciNetGoogle Scholar
  2. 2.
    C. Antoine, B. Le Goff, Timing Diagrams for Writing and Checking Logical and Behavioural Properties of Integrated Systems, in P. Prinetti, P Camurati (eds.), Correct Hardware Design Methodologies, Elsevier Science Publishers, 1992Google Scholar
  3. 3.
    J. Bohn, S. Rossig. On automatic and interactive design of communicating systems, in E. Brinksma, W. R. Cleaveland, K. G. Larsen, T Margaria, and B. Steffen (eds.), Proceedings of TACAS'95, LNCS 1019 (Springer), 1995Google Scholar
  4. 4.
    D. Bjørner, H. Langmaack, C.A.R. Hoare, ProCoS I Final Deliverable, ProCoS Technical Report ID/DTH db 13/1, January 1993Google Scholar
  5. 5.
    G. Boriello, Formalized Timing Diagrams, in Proc. European Conference on Design Automation, Belgium, 1992Google Scholar
  6. 6.
    M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T.F. Gritzner, R. Weber, The Design of Distributed Systems-An Introduction to FOCUS-Revised Version, technical report TUM-19202-2, Technical University of Munich, 1993Google Scholar
  7. 7.
    J.R. Burch et al., Symbolic Model Checking: 1020 States and Beyond, in Proc. of the Fifth Annual Logic in Computer Science, 1990Google Scholar
  8. 8.
    E.M. Clarke et al., Automatic Verification of Finite State Concurrent Systems Using Temporal Logic Specifications, ACM TOPLAS 8, 1986Google Scholar
  9. 9.
    C. Dietz, Graphical Formalization of Real-Time Requirements, in B. Jonsson, J. Parrow (eds.), Formal Techniques in Real-Time and Fault-Tolerant Systems '96, LNCS 1135 (Springer), 1996Google Scholar
  10. 10.
    L.K. Dillon, G. Kutty, L.E. Moser, P.M. Melliar-Smith, Y.S. Ramakrishna, A Graphical Interval Logic for Specifying Concurrent Systems, ACM Transactions on Software Engineering and Methodology, vol. 3, no. 2, April 1994Google Scholar
  11. 11.
    E.C.R. Helmer, Predicative Programming, Comm. ACM 27 (2), 1984Google Scholar
  12. 12.
    C.A.R. Hoare, Programs are Predicates, in C.A.R. Hoare, J.C. Shepherdson (Eds.), Mathematical Logic and Programming Languages, Prentice-Hall, London, 1985Google Scholar
  13. 13.
    C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, London, 1985Google Scholar
  14. 14.
    ISO, revised text of CD 10731, information technology-Open Systems Interconnection-conventions for the definition of OSI services, technical report, ISO/OEC JTC 1/SC 21 N 6341, ISO, 1991Google Scholar
  15. 15.
    ITU-TS, ITU-TS Recommendation Z.120: Message Sequence Chart (MCS), ITU-TS, Geneva, 1994Google Scholar
  16. 16.
    Jifeng He, C.A.R. Hoare, M. Fränzle, M. Müller-Olm, E.-R. Olderog, M. Schenke, M.R. Hansen, A.P. Ravn, H. Rischel, Provably Correct Systems, in H. Langmaack, W.P. de Roever, Y. Vytopil (eds.), Formal Techniques in Real-Time and Fault-Tolerant Systems '94, LNCS 863 (Springer), 1994Google Scholar
  17. 17.
    J.G. Henriksen et al., MONA: Monadic Second-Order Logic in Practice, in E. Brinksma, W. R. Cleaveland, K. G. Larsen, T. Margaria, and B. Steffen (eds.), Proceedings of TACAS'95, LNCS 1019 (Springer), 1995Google Scholar
  18. 18.
    P. Kelb, T. Margaria, M. Mendler, C. Gsottberger, Mosel: A Flexible Toolset for Monadic Second-Order Logic, in E. Brinksma (ed.), Proc. of TACAS'97, LNCS 1217 (Springer), 1997Google Scholar
  19. 19.
    S. Kleuker, H. Tjabben, The Incremental Development of Correct Specifications for Distributed Systems, in M.-C. Gaudel, J. Woodcock (eds.), Formal Methods Europe '96, LNCS 1051 (Springer), 1996Google Scholar
  20. 20.
    S. Kleuker, H. Tjabben, A Formal Approach to the Development of Reliable MultiUser Multimedia Applications, Philips Research Laboratories Aachen, Technical Report, 1168/96, ftp://ftp.informatik.uni-Odenburg.de/pub/procos/cocon/mumu.ps.gzGoogle Scholar
  21. 21.
    S. Kleuker. Using Formal Methods in the Development of Protocols for Multi-User Multimedia Systems, in R. Gotzhein, J. Bredereke (eds.), Formal Description Techniques IX, Chapman & Hall, London, 1996.Google Scholar
  22. 22.
    S. Kleuker, Incremental Development of Deadlock-Free Communicating Systems, in E. Brinksma (ed.), Proc. of TACAS'97, LNCS 1217 (Springer), 1997Google Scholar
  23. 23.
    B. Krieg-Bruckner, J. Peleska, E.-R. Olderog, D. Balzer, A. Baer, UniForM: Universal Formal Methods Workbench, in Statusseminar des BMBF, Softwaretechnologie, Berlin, March 1996Google Scholar
  24. 24.
    L. Lamport, How to Write a Long Formula, technical research report, Digital Equipment Corporation, in http://www.research.digital.com/SRC/proofs/proofs.html, 1994Google Scholar
  25. 25.
    Z. Manna, A. Pnueli, Temporal Verification of Reactive Systems-Safety, Springer, 1995Google Scholar
  26. 26.
    S. Mauw, M.A. Reniers, An algebraic semantics of Basic Message Sequence Charts, The computer journal, 37(4), 1994Google Scholar
  27. 27.
    E.-R. Olderog, Towards a Design Calculus for Communicating Programs, LNCS 527 (Springer), p. 61–77, 1991Google Scholar
  28. 28.
    E.-R. Olderog, S. Rössig, J. Sander, M. Schenke, ProCoS at Oldenburg: The Interface between Specification Language and OCCAM-like Programming Language. Technical Report Bericht 3/92, Univ. Oldenburg, Fachbereich Informatik, 1992.Google Scholar
  29. 29.
    Y.S. Ramakrishna, P.M. Melliar-Smith, L.E. Moser, L.K. Dillon, G. Kutty, Really Visual Temporal Reasoning, in Proc. 14th RTSS, Raliegh-Durham, IEEE Press, 1993Google Scholar
  30. 30.
    R. Schlör, W. Damm, Specification and Verification of System Level Hardware Designs using Timing Diagrams, in Proc. The European Conference on Design Automation, Paris, France, 1993Google Scholar
  31. 31.
    M.Y. Vardi, An Automata-Theoretic Approach to Linear Temporal Logic, in F. Moller, G. Birteistle (eds.), Logics for concurrency,, LNCS 1043 (Springer), 1996Google Scholar
  32. 32.
    J. Zwiers, Compositionality, Concurrency and Partial Correctness-Proof Theories for Networks of Processes and their Relationship, LNCS 321 (Springer), 1989Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Stephan Kleuker
    • 1
  1. 1.University of Oldenburg - FB InformatikOldenburgGermany

Personalised recommendations