Advertisement

A UNITY mapping operator for distributed programs

  • Michel Charpentier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1313)

Abstract

When describing a distributed application within the Unity framework, one usually uses the composition by union to express the interaction between processes. Unfortunately, the semantics of union is not well-suited to express the possible true parallelism between the different parts of a program. However, the different processes of a distributed application do not share any memory. Thanks to this particularity and the definition of an abstract communication model, the composition by union can be modified to fit the parallelism of distributed programs. This paper gives a set of theorems that characterize the Unity properties of a union program that remain valid when the processes of the program are composed with the new operator. Therefore, this operator can be used to formalize the mapping of programs to distributed architectures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Abadi and L. Lamport. The existence of refinement mappings. In 3rd Annual IEEE Symposium on Logic in Computer Science, pages 165–175, Washington D.C., July 1988. Computer Society Press.Google Scholar
  2. 2.
    N. Brown and A. Mokkedem. On mechanizing proofs within a complete proof system for Unity. In Algebraic Methodology and Software Technology, Concordia University of Montréal, 1995.Google Scholar
  3. 3.
    K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley, 1988.Google Scholar
  4. 4.
    M. Charpentier, M. Filali, P. Mauran, G. Padiou, and P. Queinnec. Observer pour Répartir. In Journées du GDR programmation, Grenoble, novembre 1995.Google Scholar
  5. 5.
    M. Charpentier, M. Filali, P. Mauran, G. Padiou, and P. Queinnec. Abstracting communication to reason about distributed algorithms. In Özalp BabaoĢlu and Keith Marzullo, editors, 10th Int'l Workshop on Distributed Algorithms (WDAG'96), volume 1151 of Lecture Notes in Computer Science, pages 89–104, October 1996.Google Scholar
  6. 6.
    M. Charpentier, M. Filali, P. Mauran, G. Padiou, and P. Quéinnec. Répartition par observation dans Unity. Technical Report 96-01-R, IRIT, 27 pages, janvier 1996.Google Scholar
  7. 7.
    M. Charpentier, A. El Hadri, and G. Padiou. A Unity-based Algorithm Design Assistant. In Workshop on Tools and, Algorithms for the Construction and, Analysis of Systems, pages 131–145, Aarhus, Denmark, May 1995. BRIGS Notes Series NS-95-2.Google Scholar
  8. 8.
    M. Charpentier, A. El Hadri, and G. Padiou. Preuve Automatique dans un Environnement de Développement Unity. T.S.I. Technique et Science Informatiques, 15(1), janvier 1996.Google Scholar
  9. 9.
    P. Collette. Design of Compositional Proof Systems Based on Assumption-Commitment Specifications. Application to UNITY. Thèse de docteur en sciences appliquées, Faculté des Sciences Appliquées, Universit'e Catholique de Louvain, June 1994.Google Scholar
  10. 10.
    M. Filali, Ph. Mauran, and G. Padiou. Raffiner pour répartir. In Quatrièmes rencontres du parallélisme, Villeneuve D'Ascq, 1992.Google Scholar
  11. 11.
    Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer-Verlag, 1992.Google Scholar
  12. 12.
    J. Misra. A Logic for Concurrent Programming. Technical report, The University of Texas at Austin, Austin, Texas 78712, April 1994.Google Scholar
  13. 13.
    J. Misra. A Logic for Concurrent Programming. Technical report, The University of Texas at Austin, Austin, Texas 78712, September 1994. Chapter 6: Closures Properties.Google Scholar
  14. 14.
    M. Raynal. Algorithmique du parallelisme: le problème de l'exclusion mutuelle. Dunod, 1984.Google Scholar
  15. 15.
    B.A. Sanders. Eliminating the Substitution Axiom from UNITY Logic. Formal Aspects of Computing, 3(2):189–205, April-June 1991.CrossRefGoogle Scholar
  16. 16.
    A. U. Shankar. An Introduction to Assertional Reasoning for Concurrent Systems. ACM Computing Surveys, 25(3):225–262, September 1993.Google Scholar
  17. 17.
    R. T. Udink. Program Refinement, in Unity-like Environments. PhD thesis, Utrecht University, September 1995.Google Scholar
  18. 18.
    R.T. Udink and J.N. Kok. On the relation between Unity properties and sequences of states. In J.W de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Semantics: Foundations and Applications, volume 666 of Lecture Notes in Computer Science, pages 594–608, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Michel Charpentier
    • 1
  1. 1.INPT-ENSEEIHT/IRITToulouse cedexFrance

Personalised recommendations