Optical image acquisition, analysis and processing for biomedical applications

  • Daniel L. Farkas
  • Byron Ballou
  • Congwu Du
  • Gregory W. Fisher
  • Christopher Lau
  • Richard M. Levenson
Session 11: Biomedical Applications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1311)


Light is a most versatile tool for investigating biological systems and phenomena; the range, non-destructiveness, spatial discrimination and speed of optical imaging are all important for investigating biological structure and function at the cellular, tissue or even whole organism level. In live biological imaging, where the technological requirements are heightened by the challenges posed, other features of light, such as coherence and wave-length, are used to generate the additional contrast and resolution needed. We report here the recent improvements in our ability to image biological specimens optically, focusing on (a) spectral imaging and the related image processing issues, and (b) tomographic three-dimensional fluorescence imaging in vivo.


Spectral Imaging Spatial Discrimination Escape Function Fluorescence Digital Microscopy Quantitative Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arndt-Jovin, D.J., Robert-Nicoud, M., Kaufman, S.J. and Jovin, T.M. (1985). Fluorescence digital microscopy in cell biology. Science, 230: 247–256.PubMedGoogle Scholar
  2. 2.
    Farkas, D.L., Baxter, G., DeBiasio, R.L., Gough, A., Nederlof, M.A., Pane, D., Pane, J., Patek, D.R., Ryan, K.W. and Taylor, D.L. (1993). Multimode light microscopy and the dynamics of molecules. Ann. Rev. Physiol., 55: 785–817.Google Scholar
  3. 3.
    Taylor, C.R. (1994). The current role of immunohistochemistry in diagnostic pathology. Adv. Path. Lab. Med., 7: 59–105.Google Scholar
  4. 4.
    Folli, S., Westerman, P., Braichotte, D., Pelegrin, A., Wagnieres, G., Van Der Bergh, H. and Mach, J.P. (1994). Antibody-indocyanin conjugates for immunophotodetection of human squamous cell carcinoma in nude mice. Cancer Res., 54: 2643–2649.PubMedGoogle Scholar
  5. 5.
    Ballou, B., Fisher, G.W., Waggoner, A.S., Farkas, D.L., Reiland, J.M., Jaffe, R., Mujumdar, R.B., Mujumdar, S.W. and Hakala, T.R. (1995). Tumor labeling in vivo using cyanine-conjugated monoclonal antibodies. Cancer Immunol. Immunother., 41: 257–263.PubMedGoogle Scholar
  6. 6.
    Wachman, E.S., Niu, W. and Farkas, D.L. (1997). AOTF microscope for imaging with increased speed and spectral versatility. Biophysical Journal, in press.Google Scholar
  7. 7.
    Speicher, M.R., Gwyn Ballard, S. and Ward, D.C. (1996). Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat. Genet., 12: 368–375.CrossRefPubMedGoogle Scholar
  8. 8.
    Farkas, D.L., Ballou, B.T., Fisher, G.W. and Fishman, D. (1996). Microscopic and mesoscopic spectral bio-imaging. Proc. SPIE, 2678: 200–209.Google Scholar
  9. 9.
    Schröck, E., du Manoir, S., Veldinan, T., Schoell, B., Wienberg, J., Ferguson-Smith, M.A., Ning, Y., Ledbetter, D.H., Bar-Am, I., Soenksen, D., Garini, Y. and Ried, T. (1996). Multicolor spectral karyotyping of human chromosomes. Science, 273: 494–497.PubMedGoogle Scholar
  10. 10.
    Malik, Z., Cabib, D., Buckwald, R.A., Talmi, A., Garini, Y. and Lipson, S.G. (1996). Fourier transform multipixel spectroscopy for quantitative cytology. J. Microsc., 182: 133–140.CrossRefGoogle Scholar
  11. 11.
    Garini, Y., Katzir, N., Cabib, D., Buckwald, R.A., Soenksen, D.G. and Malik, Z. (1996) Spectral Bio-Imaging. In: X.F. Wang and B. Herman (Editors), Fluorescence Imaging Spectroscopy and Microscopy. Chemical Analysis Series, Vol. 137. John Wiley & Sons, Inc.Google Scholar
  12. 12.
    Levenson, R.M. and Farkas, D.L. (1997). Digital spectral imaging for histopathology and cytopathology. SPIE, 2983: 123–135.CrossRefGoogle Scholar
  13. 13.
    Gardner, C.M., Jacques, S.L. and Welch, A.J. (1996). Light transport in tissue: Accurate expressions for one-dimensional fluence rate and escape function based upon Monte Carlo simulation. Lasers Sung Med, 18: 129–138.CrossRefGoogle Scholar
  14. 14.
    Farkas, D.L., Levenson, R.M., Ballou, B.C., Du, C., Lau, C., Wachman, E.S. and Fisher, G.W. (1997). Non-invasive image acquisition and advanced processing in optical bioimaging. Computerized Medical Imaging and Graphics, in press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Daniel L. Farkas
    • 1
  • Byron Ballou
    • 1
  • Congwu Du
    • 1
  • Gregory W. Fisher
    • 1
  • Christopher Lau
    • 1
  • Richard M. Levenson
    • 1
  1. 1.Center for Light Microscope Imaging and BiotechnologyCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations