Autonomous plant inspection and anomaly detection

  • M. Gregori
  • L. Lombardi
  • M. Savini
  • A. Scianna
Poster Session D: Biomedical Applications, Detection, Control & Surveillance, Inspection, Optical Character Recognition
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1311)


We here present some results of an applied research work dealing with the problem of autonomous inspection in power plants. The aim of this effort is to actualize a qualitative and quantitative improvement over the methodologies currently adopted in routine plant reliability and safety operation. We want to reach this target by exploiting the advantages of the active approach to machine vision, the currently available robotic techniques, and the enhanced value of linking the robot to the plant informative system.


Mobile Robot Anomaly Detection Active Vision Mobile Robot Navigation Supervisory System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. D. Dickmanns, B. Mysliwetz and T. Christians, “An integrated spatiotemporal approach to automated visual guidance of autonomous vehicles”, IEEE tr. on SMC, vol.20 (1990), pp.1273–1284.Google Scholar
  2. 2.
    J. Aloimonos, I. Weiss and A. Bandyopadhyay, “Active vision”, Int. Jou. of Computer Vision, vol. 1, (1988), pp.333–356.CrossRefGoogle Scholar
  3. 3.
    A. Blake and A. Yuille eds., “Active Vision”, Cambridge, Mass., MIT Press (1992).Google Scholar
  4. 4.
    R. Sharma and J. Aloimonos, “Robust detection of independent motion: an active and purposive solution”, CAR-TR-534, Univ. of Maryland (1991).Google Scholar
  5. 5.
    C. Fermuller and J. Aloimonos, “Tracking facilitates 3-D motion estimation”, CAR-TR-618, Univ. of Maryland (1992).Google Scholar
  6. 6.
    K. N. Kutulakos and C. R. Dyer, “Recovering Shape by Purposive Viewpoint Adjustment”, Int. Jou. of Computer Vision, v.12 n.2/3, (1994), pp. 113–136.CrossRefGoogle Scholar
  7. 7.
    K. D. Gremban and K. Ikeuchi, “Planning Multiple Observations for Object Recognition”, Int. Jou. of Computer Vision, v.12 n.2/3, (1994), pp. 137–172.CrossRefGoogle Scholar
  8. 8.
    Timothy S. Newman, Anil K. Jain, “A survey of automed visual inspection”, Computer Vision and Image Understaning, Volume 61, N.2, pp.231–262, Academic P, Marzo 1995.CrossRefGoogle Scholar
  9. 9.
    Sugihara, K., 1988, “Some Location Problems for Robot Navigation Using a Single Camera.” Computer Vision, Graphics and Image Processing, vol. 42, no. 1, pp 112–129.Google Scholar
  10. 10.
    Krotkov, E., 1991, “Mobile Robot Localization Using a Single Image.” Proceedings of IEEE International Conference on Robotics and Automation, Sacramento, CA, April 9-11, pp. 978–983.Google Scholar
  11. 11.
    Betke, M and Gurvits, L., 1994, “Mobile Robot Localization Using Landmarks.” 1994 International Conference on Intelligent Robots and Systems (IROS'94). Munich, Germany, Sept. 12-16, pp.135–142.Google Scholar
  12. 12.
    Hager, G. and Atiya, S., 1993, “Real-Time Vision-Based Robot Localization.” IEEE Transaction on Robotics and Automation, vol. 9, no. 6, pp. 785–800.CrossRefGoogle Scholar
  13. 13.
    Fennema, C., Hanson, A., Riseman, E., Beveridge, J.R., and Kumar, R., 1990, “Model-Directed Mobile Robot Navigation.” IEEE Transactions on Systems, Man, and Cybernetics, vol 20, no 6, November, pp. 1352–1369.Google Scholar
  14. 14.
    Kak, A., Andress, K., Lopez-Abadia, and Carroll, M., 1990, “Hierarchical Evidence Accumulation in the PSEIKI System and Experiments in Model-driven Mobile Robot Navigation.” in Uncertainty in Artificial Intelligence, Vol. 5, Elsevier Science Publishers B. V., North-Holland, pp. 353–369.Google Scholar
  15. 15.
    Talluri, R., and Aggarwal, J., 1993, “Position Estimation Techniques for an Autonomous Mobile Robot — a Review.” in Handbook of Pattern Recognition and Computer Vision, World Scientific: Singapore, Chapter 4.4, pp. 769–801.Google Scholar
  16. 16.
    Moravec, H.P., 1981, “Robot Rover Visual Navigation.” UMI Research Press, Ann Arbor, Michigan.Google Scholar
  17. 17.
    Matthies, L. and Shafer, S.A., 1987, “Error Handling in Stereo Navigation.” IEEE Transaction on Robotics and Automation, vol. 3, pp. 239–248.Google Scholar
  18. 18.
    Ayache N. and Faugeras, O.D., 1987, “Building a Consistent 3-D Representation of a Mobile Robot Environment by Combining Multiple Stereo Views.” Proc. International Joint Conference on Aritificial Intelligence, pp, 808–810.Google Scholar
  19. 19.
    Joblove, G.H. and D. Greenberg, “Color spaces for computer graphics”, Computer graphics 12,3, Agosto 1978, 20–25.Google Scholar
  20. 20.
    S.Yalamanchili, W.N. Martin, J.K.Aggarwal, “Extraction of moving object description via differencing”, Computer Graphics and Image Proc., Vol.18, pp.188–201,1982.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • M. Gregori
    • 1
  • L. Lombardi
    • 1
  • M. Savini
    • 1
  • A. Scianna
    • 2
  1. 1.Dipartimento di Informatica e SistemisticaUniversity of PaviaPaviaItaly
  2. 2.ENEL/CRACologno Monzese (MI)Italy

Personalised recommendations