A new methodology to automatically segment biomedical images

  • A. Garrido
  • N. Pérez De La Blanca
  • M. García-Silvente
Poster Session D: Biomedical Applications, Detection, Control & Surveillance, Inspection, Optical Character Recognition
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1311)


This paper presents a new approach for 2D object segmentations using an automatic method applied on images with severe noise conditions and locating objects with a very high degree of deformation. We use a physically-based shape model to obtain a deformable template, which is defined on a canonical ortogonal coordinate system. The proposed methodology works from a set of samples and from the output of an edge detector to segment the objects by using a reformulated Hough transform (automatic initialization) together with an optimization procedure (on a learned surface of deformation). Results from biomedical images are presented.

Key Words

Deformable template modal analysis Hough transform physically based modeling finite element method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, Pattern Recognition, vol. 13, pp. 111–122, 1981.CrossRefGoogle Scholar
  2. 2.
    K. Bathe. Finite Element Procedures, Prentice-Hall, 1996.Google Scholar
  3. 3.
    J. Canny, A computational approach to edge detection, IEEE Trans. PAMI, vol. 8, n. 6, pp 679–698, 1986.Google Scholar
  4. 4.
    L. D. Cohen and I. Cohen, Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images, IEEE Trans. PAMI, vol. 15, no. 11, pp 1131–1147, 1993.Google Scholar
  5. 5.
    T.F. Cootes, C.J. Taylor, D.H. Cooper and J. Graham, Active shape models — their training and application, Computer vision and image understanding, vol. 61(1), 38–59, 1995.CrossRefGoogle Scholar
  6. 6.
    J. Illingworth, and J. Kittler, A Survey of the Hough transform, Comput. Vision, Graph & Image Process., Vol 44, pp 87–116, 1988.Google Scholar
  7. 7.
    F. Leymarie and M.D. Levine, Tracking Deformable Objects in the Plane Using and Active Contour Model, IEEE Trans. PAMI, vol. 15, N. 6, pp. 617–634, June 1993.Google Scholar
  8. 8.
    A. Pentland and S. Sclaroff. Closed-form solutions for physically-based shape modeling and recognition. IEEE Trans. PAMI, 13(7), pp. 715–729, July 1991.Google Scholar
  9. 9.
    T. Poggio and V. Torre, Ill-posed Problems and Regularization Analysis in Early Vision, Proc. of AARPA Image Understanding Workshop, pp. 257–263, 1984.Google Scholar
  10. 10.
    S. Sclaroff and A. Pentland. Modal Matching for Correspondence and Recognition, IEEE Trans. PAMI, vol 17, no. 6, pp 545–561, 1995.Google Scholar
  11. 11.
    A.L. Yuille, P.W. Hallinan and D.S. Cohen, Feature Extraction from faces using deformables templates, Int. Jour. Computer Vision, vol. 8, no. 2, 99–111, 1992.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • A. Garrido
    • 1
  • N. Pérez De La Blanca
    • 1
  • M. García-Silvente
    • 1
  1. 1.Departamento de Ciencias de la Computación e I.A. ETS Ingenieriá InformáticaUniversidad de GranadaGranadaSpain

Personalised recommendations