Interactive model-based matching retrieval

  • L. Cinque
  • S. Levialdi
  • A. Malizia
  • R. Mancini
Poster Session C: Compression, Hardware & Software, Image Databases, Neural Networks, Object Recognition & Reconstruction
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1311)


We present a system for image retrieval based on the queryby-sketch technique. In our system the user formulates a query by drawing a sketch of the shape of the object (the “model”) he is looking for and requests all images, stored in a database, containing such similar object. The system evaluates the similarity between the shapes in the database and the rough sketch by applying, sequentially, three similarity criteria based on the shape description. The system tries to emulate some typical human features like the power of visual communication, the fast cognitive feedback loop and the relatively small memory load for a natural and inexpensive human-computer interaction.


visual communication human-computer interaction shape description query-by-sketch image retrieval model-based matching 


  1. 1.
    V.N. Guidivada and V.V. Raghavan, “Content-Based Image Retrieval Systems”, IEEE Computer, 22, N. 12, pp 18–22, 1995.Google Scholar
  2. 2.
    V.E. Ogle and Michael Stonebraker, “Chabot: Retrieval from a Relational Database of Images”, IEEE Computer, 22, N. 12, pp 40–48, 1995.Google Scholar
  3. 3.
    R.K. Srihari, “Automatic Indexing and Content-Based Retrieval of Captioned Images”, IEEE Computer, 22, pp 49–56, 1995.Google Scholar
  4. 4.
    W. I. Grosky, Y. Lu, “Iconic indexing using generalized pattern matching techniques”, Comp. Vision Graphics and Image Processing, 35, pp. 383–403, 1986.Google Scholar
  5. 5.
    W. I. Grosky, R. Mehrotra, “Index-based object recognition in pictorial data management”, Comp. Vision Graphics and Image Processing, 52, pp. 416–436, 1990.CrossRefGoogle Scholar
  6. 6.
    W.R. Mehrotra, F. K. Kung, I. Grosky, “Industrial part recognition using a component-index”, Image and Vision Computing, 3, pp. 225–231, 1990.CrossRefGoogle Scholar
  7. 7.
    A. Califano, R. Mohan “Multidimensional indexing for recognizing visual shape”, IEEE Trans. on Pattern, Analysis Machine Intell., 4, pp. 373–392, 1994.Google Scholar
  8. 8.
    Y. Lamdan, H. J. Wolfson “Geometric hashing: a general and efficient model-based recognition scheme”, Proc.of 2nd Intern. Conf. on Computer Vision, pp 238–249, (1988).Google Scholar
  9. 9.
    A. Del Bimbo, P. Pala, S. Santini, “Visual inage retrieval by elastic deformation of object sketches”, IEEE Symposium on Visual Languages., 4, pp. 216–223, 1994.CrossRefGoogle Scholar
  10. 10.
    M. Flickner, H. Sawhney, W. Niblank, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steel and P. Yanker, “Query by Image and Video Content: The QBIC Syatein”, IEEE Computer, 22, N. 12, pp 23–32, 1995.Google Scholar
  11. 11.
    P.D. Bruza, Stratified Information Disclosure: a Synthesys Between Hypermedia and Information Retrieval, PhD Thesis ISBN 90-9005760-9, Katholieke Universiteit Nijmegen, NL, 1993.Google Scholar
  12. 12.
    S.K. Chang, M.F Costabile and S. Levialdi, “Reality Bites — Progressive Querying and Result Visualization in logical and VR. Spaces”, IEEE Symposium on Visual Languages, pp. 100–109, 1994.Google Scholar
  13. 13.
    R. Mancini, “Interacting with a Visual Editor”, Proc. of the Int. Workshop on Advanced Visual Interfaces AVI'96, ACM Pres, T. Catarci, M.F. Costabile, S. Levialdi and G. Santucci Eds., pp. 125-131, 1996.Google Scholar
  14. 14.
    R.C. Gonzales, R.E. Woods, “Digital Image Processing”, Addison-Wesley, Reading MA,1992.Google Scholar
  15. 15.
    S.Liu-Yu, M.Thonnat, “Description of Object Shapes by Apparent Boundary and Convex Hull”, Pattern Recognition, Vol.26, No. 1, pp. 95–107, 1993.CrossRefGoogle Scholar
  16. 16.
    F.P. Preparata “Computational Geometry: an introduction”, Springer-Verlag, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • L. Cinque
    • 1
  • S. Levialdi
    • 1
  • A. Malizia
    • 1
  • R. Mancini
    • 1
  1. 1.Dipaxtimento di Scienze dell'InformazioneUniversità “La Sapienza” di RomaRomaItaly

Personalised recommendations