Advertisement

Speeding up fractal encoding of images using a block indexing technique

  • Riccardo Distasi
  • Michele Nappi
  • Sergio Vitulano
Poster Session C: Compression, Hardware & Software, Image Databases, Neural Networks, Object Recognition & Construction
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1311)

Abstract

This paper presents a novel block indexing technique (Brr) to speed up image fractal encoding. The technique assigns feature vectors to image blocks by establishing an analogy between gray level and mass. The experiments show that the BIT preserves bit rate and SNR values very close to exhaustive search, while providing speedups up to over 100.

Keywords

Exhaustive Search Query Point Image Block Iterate Function System Image Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Barsnley. Fractals everywhere. Academic Press, New York, 1988.Google Scholar
  2. 2.
    N. Beckmann, H. P. Kriegel, R. Schneider, B. Seeger. The R*-tree: an efficient and robust access method for points and rectangles. Proc. ACM SIGMOD, p. 322–331, May 1990.Google Scholar
  3. 3.
    G. Della Vecchia, R. Distasi, M. Nappi, D. Vitulano. A parallel implementation of image coding using linear prediction and iterated function systems. Lecture Nptes in Computer Science, vol. 1124, pp. 147–150, Springer-Verlag, 1996.Google Scholar
  4. 4.
    Y. Fisher, ed. Fractal Image Compression: Theory and Applications to Digital Images. Springer-Verlag, 1994.Google Scholar
  5. 5.
    J. Hämmerle, A. Uhl. Parallel algorithms for fractal image coding on MIMD architectures. Proc. Int. Conf. on Visual Information Systems, pp. 182–191, Melbourne, Feb. 1996.Google Scholar
  6. 6.
    A. E. Jacquin. Image coding based on a fractal theory of iterated contractive image transformations. IEEE Trans. Image Proc., vol. 1, pp. 18–30, Jan. 1992.CrossRefGoogle Scholar
  7. 7.
    H. V. Jagadish. Linear clustering of objects with multiple attributes. Proc. ACM SIGMOD, p. 332–342, Atlantic City, May 1990.Google Scholar
  8. 8.
    H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1989.Google Scholar
  9. 9.
    D. Saupe. A new view of fractal image compression as convolution transform coding. IEEE Signal Proc. Letters 3, 1996.Google Scholar
  10. 10.
    D. Saupe, H. Hartenstein. Lossless acceleration of fractal image compression by fast convolution. Proc. IEEE Int. Conf. on Image Proc. (ICIP'96). Lausanne, Sep. 1996.Google Scholar
  11. 11.
    D. Saupe, R. H. Hamzaoui. A guided tour of the fractal image compression literature. ACM SIGGRAPH 94 course notes. Available by ftp from fidji.informatik.unifreiburg.de under /papers/fractal/Guide.ps. Z.Google Scholar
  12. 12.
    D. Saupe, R. H. Hamzaoui. Complexity reduction methods for fractal image compression. Proc. 1994 Conf. on Image Processing: Mathematical Methods and Applications, J. M. Black-ledge ed., Oxford University Press, 1995.Google Scholar
  13. 13.
    J. D. Ullman. Principles of Database and Knowledge Based Systems. Computer Science Press, Rockville, MA, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Riccardo Distasi
    • 1
  • Michele Nappi
    • 2
  • Sergio Vitulano
    • 3
  1. 1.Istituto per la Ricerca sui Sistemi Informatici Paralleli (IRSIP)Italian National Research Council (CNR)NapoliItaly
  2. 2.Dipartimento di Informatica ed Applicazioni “R. M. Capocelli”Università di SalernoBaronissi (SA)Italy
  3. 3.Istituto di Medicina InternaUniversità di CagliariCagliariItaly

Personalised recommendations