Advertisement

Real time hardware architecture for visual robot navigation

  • F. Marino
  • E. Stella
  • N. Veneziani
  • A. Distante
Poster Session C: Compression, Hardware & Software, Image Databases, Neural Networks, Object Recognition & Construction
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1311)

Abstract

A specialized hardware architecture to permit a real time visual navigation is proposed. The navigation is performed by a two-stage approach to extract visual features and to match them over an image sequence acquired during the mobile robot motion in order to estimate motion parameters. The paper describes a hardware implementation of the first stage (the burdensome stage) of the method for egomotion parameter computation. The hardware performance permits a processing rate of 40 Mhz.

Keywords

Mobile Robot Residue Number System Interest Operator Hardware Performance Displacement Vector Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.Branca, G.Cicirelli, E.Stella, A.Distante “Mobile Vehicle's Egomotion Estimation from Time Varying Image Sequences” Proc. of ICRA97,New Mexico (USA), 1997.Google Scholar
  2. 2.
    A.Branca, E.Stella, A.Distante “Passive Navigation using Focus of Expansion”, Proc. of Workshop on applications of computer vision, Sarasota (USA),1996.Google Scholar
  3. 3.
    H.P.Moravec, “The Stanford Cart and the CMU Rover”,Proc. IEEE, 1983.Google Scholar
  4. 4.
    D.Marr, T.Poggio, “A computational theory of human stereo vision”,Pros. of Royal Society of London B, Vol.204.Google Scholar
  5. 5.
    N.Ayache, “Artificial Vision for Mobile Robots” MIT Press, 1991Google Scholar
  6. 6.
    G.Erten, R.M.Goodney, “Analog VLSI Implementation for Stereo Correspondence Between 2-D Images” IEEE Trans. Neural Net. vol.7 (2), pp. 266–277 (1996).CrossRefGoogle Scholar
  7. 7.
    Alia and E. Martinelli, “A VLSI Algorithm for Direct and Reverse Conversion from Weighted Binary Number System to Residue Number System” IEEE Trans. Circuits Syst. CAS-31 (12), pp. 1033–1039 (1984).CrossRefGoogle Scholar
  8. 8.
    Vu “Efficient Implementations of the Chinese Remainder Theorem for Sign Detection and Residue Decoding” IEEE Trans. Circuits Syst. CAS-34 (7), pp. 646–651 (1985).Google Scholar
  9. 9.
    Shenoy and R. Kumaresen, “Residue to Binary Conversion for RNS Arithmetic Using Only Modular Look-up Tables” IEEE Trans. Circuits Syst. CAS-35 (9), pp. 1158–1162 (1988).CrossRefGoogle Scholar
  10. 10.
    Capocelli and R. Giancarlo “Efficient VLSI Networks for Converting an Integer from Binary System to Residue Number System and Vice Versa” IEEE Trans. Circuits Syst. CAS-35 (11), pp. 1425–1430 (1988).CrossRefGoogle Scholar
  11. 11.
    Elleithy and M. A. Bayoumi “Fast Flexible Architecture for RNS Arithmetic Decoding” IEEE Trans. Circuits Syst. CAS-II 39 (4), pp. 226–235 (1992).Google Scholar
  12. 12.
    J.Martin and J.L.Crowley “Comparison of Correlation techniques”, Intelligent Autonomous Systems,U.Rembold et al. (Eds.), IOS Press, 1995.Google Scholar
  13. 13.
    F.Marino, E. Stella, N. Veneziani,A.Distante “Real Time specilized hardware for visual feature matching”, IESI internal report, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • F. Marino
    • 1
  • E. Stella
    • 1
  • N. Veneziani
    • 1
  • A. Distante
    • 1
  1. 1.C.N.R.Istituto Elaborazione Segnali ed ImmaginiBariItaly

Personalised recommendations