Colour image retrieval fitted to «classical» querying

  • José Martinez
  • Sylvie Guillaume
Session 9: Image Databases
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1311)


Query by image content is certainly the main problematic in the field of multimedia databases. In this paper, we investigate the usage of a perceptual colour space during and after a coarse segmentation process in order to offer to users the possibility of querying the obtained regions thanks to a query language and fuzzy descriptions of colour, spatial, and topological properties of these regions. By being understandable to the user, contrary to criteria used in comparative searches, it allows a deterministic, though more or less constrained search. Nevertheless, by maintening a rich set of characteristics, it does not preclude the computation of simpler properties usable in such comparative searches.


  1. [Bach 96]
    Bach, J. R., Fuller, C., Gupta, A., Hampapur, A., Horowitz, B., Humphrey, R., Jain, R. C., Shu, C.; Virage Image Search Engine: An Open Framework for Image Management; Proc. of the IS&T/SPIE Int. Symposium on Electronic Imaging: Science and Technology, Storage & Retrieval for Image and Video Databases IV, 1996, pp. 76–87Google Scholar
  2. [Ballard & Brown 82]
    Ballard, D. H., Brown, C. M.; Computer Vision; Prentice-Hall, 1982, 523 p.Google Scholar
  3. [Cattel 94]
    Cattel, R. G. G. (ed.); The Object Database Standard: ODMG-93; Morgan Kaufmann, San Francisco, 1994, 176 p.Google Scholar
  4. [Dijkstra 76]
    Dijkstra, E. W.; A Discipline of Programming; Prentice Hall, 1976Google Scholar
  5. [Fioro & Gustedt 94]
    Fioro, C., Gustedt, J.; Two Linear-Time Union-Find Strategies for Image Processing; Research Report No. 375, Technische Universität Berlin, Fachbereich 3, Mathematik, 1994, 12 p.Google Scholar
  6. [Flickner 95]
    Flickner, M., Sawhnery, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.; Query by Image and Video Content: The QEIC System; IEEE Computer, September 1995, pp. 23–32Google Scholar
  7. [Gevers 96]
    Gevers, T.; Colour Image Invariant Segmentation and Retrieval; Ph. D. Thesis, University of Amsterdam, Netherlands, May 1996, 142 p.Google Scholar
  8. [Gevers & Smeulders 96]
    Gevers, T., Smeulders, A. W. M.; Color-Metric Pattern-Card Matching for Viewpoint Invariant Image Retrieval; Proceedings the IEEE Int. Conf. on Pattern Recognition (ICPR), 1996, pp. 3–7Google Scholar
  9. [Jones 90]
    Jones, C. B.; Systematic Software Development using VDM, 2 nd Edition; Prentice Hall, 1990Google Scholar
  10. [Lin 95]
    Lin, H.-C., Wang L.-L., Yang, S.-N.; Color Image Retrieval Based on Hidden Markov Models; Proceedings of the IEEE Int. Conf. on Image Processing (VCIP), 1995, pp. 342–345Google Scholar
  11. [Ogle & Stonebraker 95]
    Ogle, V E., Stonebraker, M.; Chabot: Retrieval from a Relational Database of Images; IEEE Computer, September 1995, pp. 40–48Google Scholar
  12. [Pujas 96]
    Pujas, P; Analyse d'images couleur et fusion d'images 3D et couleur (in french); Ph. D. Thesis, University of Montpellier II, France, February 1996, 249 p.Google Scholar
  13. [Pujas & Aldon 94]
    Pujas, P., Aldon, M.-J.; Robust Colour Image Segmentation; Proc. of ICAR, Sant Feliu de Guixols, Catalunya, Spain, 1994Google Scholar
  14. [Smith & Chang 96]
    Smith, J. R., Chang, S.-R; VisualSEEK: a Fully Automated Content-Based Image Query System; ACM Multimedia, Boston, Massachussets, November 1996Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • José Martinez
    • 1
  • Sylvie Guillaume
    • 1
  1. 1.IRESTEInstitut de Recherche en Informatique de Nantes (IRIN)Nantes Cedex 3France

Personalised recommendations