A geometric modeling tool for stereo-matching and reconstruction of a model of 3D-scene

  • L. Sommellier
  • E. Tosan
  • D. Vandorpe
Poster Session B: Active Vision, Motion, Shape, Stereo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1310)


In this paper, we present how a geometrical modeling tool enables to accelerate the matching of stereo-images and to obtain a 3D-model of the reconstructed scene. In the first time, we represent the topology of images of segments using combinatorial maps. This representation enables to efficiently match the images and to construct, during the matching process, the topological model of the matched scene. A boundary representation of the 3D-scene is obtained by embedding this topological model in ℝ3.


Boundary Representation Topological Information Topological Model Stereo Match Surface Subdivision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Ayache. Artificial vision for mobile robots. stereo vision and multisensory perception. MIT Press, 1991.Google Scholar
  2. 2.
    Baumgart. A polyhedron representation for computer vision. In National Computer Conference, pages 589–596, Arlington, 1975. AFIPS Press.Google Scholar
  3. 3.
    R. Cori. Un code pour les graphes planaires et ses applications. Astérisque, 27, 1975.Google Scholar
  4. 4.
    O. Faugeras. Three-dimensional computer vision. Artificial Intelligence Series. MIT Press, 1993.Google Scholar
  5. 5.
    M.M. Fleck. A topological stereo matcher. International journal of computer vision, 6(3):197–226, 1991.Google Scholar
  6. 6.
    A. Gagalowicz. Towards a vision system for a domestic robot. In Journée analyse/synthèse d'images, pages 63–82, 1994.Google Scholar
  7. 7.
    A. Gagalowicz and L. Vinet. Regions matching for stereo pairs. In Sixth Scandinavian conference on image analysis, pages 63–70, Juin 1989.Google Scholar
  8. 8.
    M. Herman and T. Kanade. Incremental reconstruction of 3D scenes from multiple complex images. Artificial intelligence, 30:289–341, 1986.Google Scholar
  9. 9.
    W. Hoff and N. Ahuja. Surfaces from stereo: integrating feature matching, disparity estimation, and contour detection. IEEE Transactions on pattern analysis and machine intelligence, 11(2), Février 1989.Google Scholar
  10. 10.
    R. Horaud and O. Monga. Vision par ordinateur. série informatique. Traité des Nouvelles technologies, 1993.Google Scholar
  11. 11.
    11.R. Horaud and T. Skordas. Stereo correspondence through feature grouping and maximal cliques. IEEE Transactions on pattern analysis and machine intelligence, 11(11):1168–1180, Novembre 1989.Google Scholar
  12. 12.
    A. Jacques. Constellations et graphes topologiques. In Combinatorial theory and applications, pages 657–673, 1970.Google Scholar
  13. 14.
    P. Lienhardt. Topological models for boundary representation: a comparison with n-dimensional generalised maps. Computer-aided design, 23(1):59–82, Février 1991.Google Scholar
  14. 15.
    G. Medioni and R. Nevatia. Segment-based stereo matching. Computer vision, graphics, and image processing, 31:2–18, 1985.Google Scholar
  15. 16.
    R. Mohan. Constraint satisfaction networks for vision. Technical report, Exploratory computer vision group IBM Thomas J. Watson research center Yorktown, 1989.Google Scholar
  16. 17.
    Pun and Blake. Relationship between image synthesis and analysis: towards unification? Computer Graphics Forum, 9(2):149–163, 1990.Google Scholar
  17. 18.
    A. Requicha. Representations for rigid solids: theory, methods and systems. Computing surveys, 12(4):437–464, 1980.Google Scholar
  18. 19.
    L. Sommellier, E. Tosan, S. Bouakaz, and D. Vandorpe. Using combinatorial maps for stereo correspondence and reconstruction. In A. Behrooz, editor, Proc. Int'l Conf. on Knowledge Transfer Visualization & Graphics'96, pages 540–546, London, England, Juillet 1996.Google Scholar
  19. 20.
    K. Weiler. Edge-based data structure for solid modeling in curved-surface environments. IEEE computer graphics and applications, 5(1), 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • L. Sommellier
    • 1
  • E. Tosan
    • 1
  • D. Vandorpe
    • 1
  1. 1.Laboratoire d'Informatique Graphique Image et Modélisation (L.I.G.I.M.)Université Claude Bernard Lyon IVilleurbanne CedexFrance

Personalised recommendations