Advertisement

Quantitative assessment of two skeletonization algorithms adapted to rectangular grids

  • M. Ciuc
  • D. Coquin
  • Ph. Bolon
Poster Session B: Active Vision, Motion, Shape, Stereo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1310)

Abstract

In this paper, an adaptation to rectangular grids of two skeletonization algorithms is presented Skeletonizations are quantitatively compared by using Baddeley's distance between the original pattern and the one reconstructed from the skeleton.

Keywords

skeletonization rectangular grids Baddeley distance 

References

  1. [1]
    E. Thiel, “Unification de la squelettisation menée en distance” 9th congrès RFIA, vol 1, pp 349–358, Paris, Janvier 1994. AFCET..Google Scholar
  2. [2]
    C.Arcelli, G. Sanniti di Baja, “Ridge points in Euclidean distance maps”. Pattern Recognition Letters, vol. 13, 1992.Google Scholar
  3. [3]
    C.Arcelli, G. Sanniti di Baja, “Euclidean skeleton via centre-of-maximal disc extraction”. Image and Vision Computing, vol. 11, 3 April 1993.Google Scholar
  4. [4]
    D. Coquin, Ph. Bolon, “Discrete distance operators on rectangular grids”, Pattern Recognition Letters, vol. 16, pp 911–923, 1995.Google Scholar
  5. [5]
    A. Rosenfeld, J. Pflatz, “Sequential operators in digital picture processing”, J. ACM, 13, pp 471–494,1966Google Scholar
  6. [6]
    D. Coquin, Ph. Bolon, “Comparaison d'opérateurs locaux de distance”, Proc. 3e Colloque de Geometric Discrete: Fondements et Applications, pp 182–191, 1993Google Scholar
  7. [7]
    G. Borgefors, “Digital transformations in digital images”, Computer Vision, Graphics and Image Processing, vol. 34, pp 344–371, 1986.Google Scholar
  8. [8]
    A.J.Baddeley, “An error metric for binary images”, Robust Computer Vision, Wichmann, Karlsruhe, pp 59–78, 1992Google Scholar
  9. [9]
    C. Arcelli, G. Sanniti, “A one-pass two operation process to detect the skeletal pixels on the 4-distance transform ”, IEEE Transaction Pattern Analysis, Machine Intelligence, vol. 11, no. 4, pp 411–414,1989.Google Scholar
  10. [10]
    J.M.Chassery, A. Montanvert, “Géométrie discrète en analyse d'images”. Hermes 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • M. Ciuc
    • 1
  • D. Coquin
    • 1
  • Ph. Bolon
    • 1
  1. 1.Laboratoire d'Automatique et de Micro-Informatique IndustrielleLAMII/CESALP - Université de SavoieAnnecy CedexFrance

Personalised recommendations