Experiments on the decomposition of arbitrarily shaped binary morphological structuring elements

  • Giovanni Anelli
  • Alberto Broggi
  • Giulio Destri
Poster Session B: Active Vision, Motion, Shape, Stereo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1310)


The decomposition of binary structuring elements is a key problem in morphological image processing. So far only the decomposition of convex structuring elements and of specific subsets of non-convex ones have been proposed in the literature. This work presents the results of a new approach, based on a Genetic Algorithm, in which no constraints are imposed on the shape of the initial structuring element, nor assumptions are made on the elementary factors, which are chosen from a given set.


  1. 1.
    G. Anelli, A. Broggi, and G. Destri. Decomposition of Arbitrarily Shaped Binary Morphological Structuring Elements using Genetic Algorithms. IEEE Trans PAMI, 1997. In press.Google Scholar
  2. 2.
    M. Bertozzi and A. Broggi. GOLD: a Parallel Real-Time Stereo Vision System for Generic Obstacle and Lane Detection. IEEE Trans Image Processing, 1997. In press.Google Scholar
  3. 3.
    A. Broggi. Speeding-up Mathematical Morphology Computations with Special-Purpose Array Processors. In Procs of the 27th HICSS, vol I, pages 321–330, 1994.Google Scholar
  4. 4.
    A. Broggi, G. Conte, F. Gregoretti, C. Sansoè, R. Passerone, and L. M. Reyneri. Design and Implementation of the PAPRICA Parallel Architecture. The Journal of VLSI Signal Processing, 1997. In press.Google Scholar
  5. 5.
    D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Readings, MA, 1989.Google Scholar
  6. 6.
    R. M. Haralick, S. R. Sternberg, and X. Zhuang. Image Analysis Using Mathematical Morphology. IEEE Trans PAMI, 9(4):532–550, 1987.Google Scholar
  7. 7.
    J. Holland. Adaption in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI, 1975.Google Scholar
  8. 8.
    G. Matheron. Random Sets and Integral Geometry. John Wiley, New York, 1975.Google Scholar
  9. 9.
    Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, Berlin, 1992.Google Scholar
  10. 10.
    H. Park and R. T. Chin. Optimal Decomposition of Convex Structuring Elements for a 4-Connected Parallel Array Processor. IEEE Trans PAMI, 16(3), March 1994.Google Scholar
  11. 11.
    H. Park and R. T. Chin. Decomposition of Arbitrarily Shaped Morphological Structuring Elements. IEEE Trans PAMI, 17(1), January 1995.Google Scholar
  12. 12.
    J. Serra. Image Analysis and Mathematical Morphology. Academic Press, 1982.Google Scholar
  13. 13.
    X. Zhuang and R. M. Haralick. Morphological structuring element decomposition. Computer Vision, Graphics, and Image Processing, 35:370–382, September 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Giovanni Anelli
    • 1
  • Alberto Broggi
    • 1
  • Giulio Destri
    • 1
  1. 1.Dipartimento di Ingegneria dell'InformazioneUniversità di ParmaParmaItaly

Personalised recommendations