Adaptive motion estimation and video vector quantization based on spatiotemporal non-linearities of human perception

  • J. Malo
  • F. Ferri
  • J. Albert
  • J. M. Artigas
Poster Session B: Active Vision, Motion, Shape, Stereo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1310)


The two main tasks of a video coding system are motion estimation and vector quantization of the signal. In this work a new splitting criterion to control the adaptive decomposition for the non-uniform optical flow estimation is exposed. Also, a novel bit allocation procedure is proposed for the quantization of the DCT transform of the video signal. These new approaches are founded on a perception model that reproduce the relative importance given by the human visual system to any location in the spatial frequency, temporal frequency and amplitude domain of the DCT transform. The experiments show that the proposed procedures behave better than their equivalent (fixed-block-size motion estimation and fixed-step-size quantization of the spatial DCT) used by MPEG-2.

Key Words

Video Coding Motion Estimation Perceptual oriented Quantization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. LeGall. MPEG: A video compression standard for multimedia applications. Comm. ACM Vol. 34, No 4, 47–58. (1991)Google Scholar
  2. [2]
    ISO/IEC 13818 Draft International Standard: Generic coding of moving pictures and associated audio, Part 2: Video. (1993)Google Scholar
  3. [3]
    H.G. Musmann, P. Pirsh & H.J. Grallert. Advances in video coding. Proc. IEEE Vo1.73, No4, 523–548. (1985).Google Scholar
  4. [4]
    F. Dufaux & F. Moscheni. Motion estimation techniques for digital TV: A review and new contribution. Proc IEEE Vol.83, No6, 858–876. (1995)Google Scholar
  5. [5]
    J.L. Barron, D.J. Fleet & S.S. Bauchemin. Performance of optical flow techniques. IJCV, Vol. 12, No1, 43–77. (1994)Google Scholar
  6. [6]
    N. Jayant, J. Johnston & R. Safranek. Signal compression based on models of human perception. Proc. IEEE, Vol.81, No10, 1385–1422. (1993)Google Scholar
  7. [7]
    G.K. Wallace. The JPEG still picture compression standard. Comm. ACM. Vol.34, No4, 31–43. (1991)Google Scholar
  8. [8]
    F. Bosveld, R.L. Lagendijk & J. Biemond. Compatible spatio-temporal subband encoding of HDTV. Signal Proc. Vol.28, 271–290 (1992)Google Scholar
  9. [9]
    J. Luo, C W. Chen, KJ. Parker & T.S. Huang. Three dimensional subband video analysis and synthesis with adaptive clustering in high-frequency subbands. Proc IEEE Int. Conf Im. Proc. Austin TX (1994)Google Scholar
  10. [10]
    J. Malo, A.M. Pons & J.M. Artigas. Bit allocation algorithm for codebook design in vector quantization fully based on human visual system non-linearities for suprathreshold contrasts. Electr. Lett. Vol.24, 1229–1231. (1995)Google Scholar
  11. [11]
    J. Malo, A.M. Pons & J.M. Artigas. Subjective image fidelity metric based on bit allocation of the human visual system in the DCT domain. (Accepted in Image Vis. Comp.)Google Scholar
  12. [12]
    M.H. Chan, Y.B. Yu, & A.G. Constantinides. Variable size block matching motion compensation with applications to video coding. Proc. IEE, Vol.137, No4, 205–212 (1990)Google Scholar
  13. [13]
    F. Duffaux & M. Kunt. Multigrid block matching motion estimation with an adaptive local mesh refinement. SPIE Proc. Visual Commun. and Image Process 92', Vol. 1818. (1992)Google Scholar
  14. [14]
    D.H. Kelly. Motion and vision II: Stabilized spatio-temporal threshold surface. JOSA, Vol.69, No10, 1340–1349. (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • J. Malo
    • 1
  • F. Ferri
    • 1
  • J. Albert
    • 1
  • J. M. Artigas
    • 1
  1. 1.Departament d' Óptica, Facultat de FísicaUniversitat de ValènciaBurjassot, ValénciaSpain

Personalised recommendations