Using top-down and bottom-up analysis for a multi-scale skeleton hierarchy

  • Gunilla Borgefors
  • Giuliana Ramella
  • Gabriella Sanniti di Baja
Session 5: Shapes & Surfaces
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1310)


Multi-scale skeletons can be conveniently employed in the matching phase of a recognition task. The multi-scale skeletons are here obtained by first computing the skeleton at all levels of a resolution structure and then establishing a hierarchy among skeleton components at different scales, using a parent-child relationship. Although subsets of the skeleton expected to represent given pattern subsets may consist of different number of components at different scales, a component preserving decomposition is obtained that produces a hierarchy in accordance with human intuition.


Resolution Level White Pixel Pyramid Level Human Intuition Child Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H.Blum, R.N.Nagel, “Shape description using weighted symmetric axis features”, Pattern Recognition, 10, 167–180 (1978).Google Scholar
  2. 2.
    G. Sanniti di Baja, E. Thiel, “(3,4)-weighted skeleton decomposition for pattern representation and description”, PatternRecognition, 27, 1039–1049 (1994).Google Scholar
  3. 3.
    A.Toet, “A hierarchical morphological image decomposition”, Pattern Recognition Letters, 11, 267–274 (1990).Google Scholar
  4. 4.
    H. Rom, G.Medioni, “Hierarchical decomposition and axial shape description”, IEEE Trans. on PAMI, 15, 973–981 (1993).Google Scholar
  5. 5.
    A.R. Dill, M.D. Levine, P.B. Noble, “Multiple resolution skeletons,” IEEE Trans. on PAMI 9 495–504 (1987).Google Scholar
  6. 6.
    S.M.Pizer, W.R.Oliver, S.H.Bloomberg, “Hierarchical shape description via the multiresolution symmetric axis transform,” IEEE Trans. on PAMI 9, 505–511 (1987).Google Scholar
  7. 7.
    G.Borgefors, G.Ramella, G.Sanniti di Baja, “Multi-scale skeletons from binary pyramids”, Proc. 3rd Int. Workshop on Visual Form, May 97, Capri, Italy.Google Scholar
  8. 8.
    G.Borgefors, G.Ramella, G.Sanniti di Baja, “Multiresolution representation of shape in binary images”, in Discrete Geometry for Computer Imagery, S.Miguet, A.Montanvert and S.Ubéda (Eds.), LNCS 1176, Springer-Verlag, 51–58 (1996).Google Scholar
  9. 9.
    C.Arcelli, G.Sanniti di Baja, “A one-pass two-operations process to detect the skeletal pixels on the 4-distance transform,” IEEE Trans. on PAMI 11, 411–414, 1989.Google Scholar
  10. 10.
    S.Yokoi, J.I.Toriwaki, T.Fukumura, “An analysis of topological properties of digitized binary pictures using local features”, CGIP, 4, 63–73 (1975).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Gunilla Borgefors
    • 1
  • Giuliana Ramella
    • 2
  • Gabriella Sanniti di Baja
    • 2
  1. 1.Centre for Image AnalysisSwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Italian National Research CouncilIstituto di CiberneticaNaplesItaly

Personalised recommendations