An automatic transformation from bimodal to pseudo-binary images

  • José M. Iñesta
  • Pedro J. Sanz
  • Ángel P. del Pobil
Poster Session A: Color & Texture, Enhancement, Image Analysis & Pattern Recognition, Segmentation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1310)


In this paper a procedure is proposed to transform bimodal images into enhanced ones with unified properties. These (pseudo-binary) images keep valuable grey level information and can be easily segmented by a global thresholding technique, using always the same threshold in the middle of the grey scale. This transformation is automatically self-adjusted from the statistical characterization of the histogram modes. It can be useful for the automatic segmentation of bimodal images found in controlled illumination environments, dealing with possible uncontrolled light variations. In addition, the grey level values in the pseudo-binary image can be considered as occupation percentage of the pixels, so subpixel reasonings can be easily inferred from the data in this new image.

Key Words

Grey levels Global thresholding techniques Segmentation Histogram Gaussian distributions Subpixel precision 


  1. [1]
    Davies ER. (1990) “Machine vision: theory, algorithms, practicalities”. Academic Press Ltd.Google Scholar
  2. [2]
    Haralick RM and Shapiro LG. (1992). “Computer and robot vision”. Addison-Wesley Publishing Company, Inc.Google Scholar
  3. [3]
    Price K. (1984) “Image Segmentation: a Comment on Studies in Global and Local Histogram-Guided Relaxation Algorithms”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6: 247–249.Google Scholar
  4. [4]
    Sang U, Lee K, Chung YS, and Park RH. (1990) “A comparative performance study of several global thresholding techniques for segmentation”. Computer Vision, Graphics, and Image Processing, vol. 52(2): 171–190.Google Scholar
  5. [5]
    Whatmough RJ. (1991) “Automatic threshold selection from a histogram using the exponential hull”. Computer Vision, Graphics, and Image Processing. Graphical Models and Image Processing, vol. 53(6): 592–600.Google Scholar
  6. [6]
    Maravall D, Sanandrés JA, and Baumela L. (1995) “Mobile Detection Based on Histogram Difference”. Lecture Notes in Computer Science, 970. Springer-Verlag. pp. 286–293.Google Scholar
  7. [7]
    Sanz PJ, Inesta JM, Buendia M, and Sarti MA. (1994) “A Fast and Precise Way for Computation of Moments for Morphometry in Medical Images”. Proceedings of the V Int. Symposium on Biomedical Engineering, pp. 99–100. Santiago de Compostela, Spain.Google Scholar
  8. [8]
    Inesta JM. (1994) “Algoritmos de Visión Artificial y de Reconocimiento de Patrones para et Estudio Morfométrico del Eje Raqufdeo Humano”. Tesis Doctoral. Dpto de Informática, Univ. de Valencia, Spain. (In Spanish).Google Scholar
  9. [9]
    Pratt WK. (1991) “Digital Image Processing”. John Wiley and Sons, New York.Google Scholar
  10. [10]
    Sanz PJ. (1996) “Razonamiento Geométrico Basado en Visión para la Determinación y Ejecución del Agarre en Robots Manipuladores”. Tesis Doctoral. Dpto. de Informâtica, Univ. Jaume I, Spain. (In Spanish).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • José M. Iñesta
    • 1
  • Pedro J. Sanz
    • 1
  • Ángel P. del Pobil
    • 1
  1. 1.Departamento de InformáticaUniversitat Jaume ICastellónSpain

Personalised recommendations