Image segmentation by means of fuzzy entropy measure

  • C. Di Ruberto
  • M. Nappi
  • S. Vitulano
Poster Session A: Color & Texture, Enhancement, Image Analysis & Pattern Recognition, Segmentation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1310)


The paper describes an algorithm for image segmentation using fuzzy entropy measure. The relation between the fuzzy entropy of an image domain and the fuzzy entropy of its subdomains is explored as a uniformity predicate. With the aim of implementing the model, we have introduced a well known technique of Problem Solving. The most important roles of our model are played by the Evaluation Function (EF) and the Control Strategy. So the EF is related to the ratio between the fuzzy entropy of one region or zone of the picture and the fuzzy entropy of the entire picture. The Control Strategy determines the optimal path in the search tree (quadtree) so that the nodes of the optimal path have minimal fuzzy entropy. The paper shows some comparisons between the proposed algorithm and classical edge detection techniques.


Image Segmentation Edge Detection Search Tree Child Node Local Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.C. Gonzales and P. Wintz, Digital Image Processing, 2nd Edn. Addison-Wesley, Reading Mass. (1987).Google Scholar
  2. 2.
    R. Rosenfeld and A.C. Kak, Digital Picture Processing, 2nd Edn. v.2, Academic Press, N.Y. (1982).Google Scholar
  3. 3.
    D.C. Marr and E. Hildreth, “Theory of edge detection”, Proc. R. Soc. London B 207, 187–217 (1980).Google Scholar
  4. 4.
    B. Born. Robot Vision, MIT Press, Cambridge, Mass. (1986).Google Scholar
  5. 5.
    J. Canny, “A computation approach to edge detection”, IEEE Trans. on Pattern Analysis Mach. Intell., PAMI-8, 679–698 (1986).Google Scholar
  6. 6.
    M.A. Gennert, “Detecting half-edges and vertices in images”, Proc. IEEE Int. Conf. Comput. Vision Pattern Recogn., 552–557 (1986).Google Scholar
  7. 7.
    V.S. Nalwa and T.O. Binford, “On detecting edges”, IEEE Trans. on Pattern Analysis Mach. Intell., PAMI-6, 699–714 (1986).Google Scholar
  8. 8.
    M.M. Fleck, “Some defects in finite-difference edge finders”, IEEE Trans. on Pattern Analysis Mach. Intell., PAMI-14, 337–345 (1992).Google Scholar
  9. 9.
    Y.G. Leclerc, “Capturing the local structure in image discontinuities in two dimensions”. Proc. IEEE Int. Conf. Comput. Vision Pattern Recogn., 34–38 (1985).Google Scholar
  10. 10.
    P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion”, IEEE Trans. on Pattern Analysis Mach. Intell., PAMI-12, 629–639 (1990)Google Scholar
  11. 11.
    P. Saint Marc, J. Chen and G. Medioni, “Adaptive smoothing: a general tool for early vision”, IEEE Trans. on Pattern Analysis Mach. Intell., PAMI-13, 514–530 (1991).Google Scholar
  12. 12.
    W.E. Higgins and C. Hsu, “Edge detection using two dimensional local structure information”, Pattern Recognition, 27, 277–294 (1994).Google Scholar
  13. 13.
    S.D. Yanowitz and A.M. Brukstein, “A new method for image segmentation”, Comput. Vision Graphics Image Processing, 46, 82–95 (1989).Google Scholar
  14. 14.
    T. Tart, P.J. Flynn and A.K. Jain, “Segmentation of document images”, IEEE Trans. on Pattern Analysis Mach. Intell., PAMI-11, 1322–1329 (1989).Google Scholar
  15. 15.
    T. W. Ridler and S. Calvard, “Picture thresholding using an iterative selection method”, IEEE Trans. on System Man and Cybern., SMC-8, 630–632 (1978).Google Scholar
  16. 16.
    P.K. Sahoo, S. Soltani, A.K.C. Wong and Y.C. Chen, “A survey of thresholding techniques”. Comput. Vision Graphics Image Processing, v.41, 233–260 (1988).Google Scholar
  17. 17.
    N.R. Pal and S.K. Pal, “Object-background segmentation using a new definition of entropy”, IEE Proc., Pt, 136, 284–295 (1989).Google Scholar
  18. 18.
    N.R. Pal and D. Bhandari, “On object-background classification”, Int. J. Syst. Sci., 23, 1903–1920 (1992).Google Scholar
  19. 19.
    A.S. Abutaleb, “Automatic thresholding of grey level pictures using two-dimensional entropy”, Comput. Vision Graphics Image Processing, 47, 22–32 (1989).Google Scholar
  20. 20.
    P.J. Burt, T. Hong and A. Rosenfeld, “Segmentation and estimation on image properties through cooperative hierarchical computation”, IEEE Trans. on System Man and Cybern., v.11, n.12 (1981).Google Scholar
  21. 21.
    Y. Nakagawa and A. Rosenfeld, “Some experiments on variable thresholding”, Pattern Recognition, 11, 191–204 (1979).Google Scholar
  22. 22.
    J. Kittler and J. Illingworth, “Minimum error thresholding”, Pattern Recognition, 19, 41–47 (1986).Google Scholar
  23. 23.
    S.Vitulano, C.Di Ruberto and M.Nappi, “A.I. based image segmentation”, Lectures Notes in Computer Science, Proc. of Int. Conf. of Image Analysis and Processing, C. Braccini, L. De Floriani, G. Vernazza (Eds.), Springer Verlag, 974, 429–434 (1995).Google Scholar
  24. 24.
    S. Tanimoto, M. Savini and S. Vitulano, “Allocation in attention vision”, Human and Machine Vision, Proc. of the Third Int. Workshop on Perception, V. Cantoni (Ed.), Plenum Press, 171–180 (1994).Google Scholar
  25. 25.
    S.L. Horowitz and T. Pavlidis, “Picture segmentation by a directed split and merge procedure”, Proc of the Second Intern. Joint Conf on Pattern Recognition, pp.424–433, Copenhagen, Aug. (1974).Google Scholar
  26. 26.
    N.J. Nilsson, Principles of Artificial Intelligence, Springer Verlag (1982).Google Scholar
  27. 27.
    S.Z. Selim and M.A. Ismail, “Soft clustering of multidimensional data: a semi-fuzzy clustering approach”, Pattern Recognition, 15, 559–568 (1984).Google Scholar
  28. 28.
    M.S. Kamel and S.Z. Selim, “A thresholded fuzzy k-means algorithm for semi-fuzzy clustering”, Pattern Recognition, 24, 825–833 (1991).Google Scholar
  29. 29.
    Q. Zhang and R.D. Boyle, “A new clustering algorithm with multiple runs of iterative procedures”, Pattern Recognition, 24, 835–848 (1991).Google Scholar
  30. 30.
    M. Nappi and S. Vitulano, “A new more efficient k-means algorithm for clustering”, Proc. of the Thirteenth IASTED Int. Conf., Applied Informatics, ed. M. H. Hamza, pp. 324–327 (1995).Google Scholar
  31. 31.
    R.M. Haralick, “Digital step edges from zero crossing of second directional derivatives”, IEEE Trans. on Pattern Analysis Mach. Intell., PAMI-6, 58–68 (1984).Google Scholar
  32. 32.
    S. Vitulano, C. Di Ruberto, M. Nappi, “Biomedical Image Processing”, Proc. III IEEE ICECS '96, Oct. 13–16, Rodos, v.2, pp. 1116–1119 (1996).Google Scholar
  33. 33.
    B.Kosko, “Fuzzy Thinking: the New Science of Fuzzy Logic”, Hyperion Ed. (1993).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • C. Di Ruberto
    • 1
  • M. Nappi
    • 1
  • S. Vitulano
    • 1
  1. 1.Istituto di Medicina InternaPoliclinico UniversitarioCagliariItaly

Personalised recommendations