Advertisement

Using proximity and spatial homogeneity in neighbourhood-based classifiers

  • J. S. Sánchez
  • F. Pla
  • F. J. Ferri
Poster Session A: Color & Texture, Enhancement, Image Analysis & Pattern Recognition, Segmentation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1310)

Abstract

In this paper, a set of neighbourhood-based classifiers are jointly used in order to select a more reliable neighbourhood of a given sample and take an appropriate decision about its class membership. The approaches introduced here make use of two concepts: proximity and symmetric placement of the samples.

Keywords

Classification Accuracy Single Classifier Pattern Recognition Letter Minimum Classification Error Multiple Classifier System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alinat, P. (1993). Periodic Progress Report 4: ROARS Project ESPRIT II 5516.Google Scholar
  2. 2.
    Chaudhuri, B.B. (1996). A new definition of neighbourhood of a point in multi-dimensional space, Pattern Recognition Letters 17, 11–17.Google Scholar
  3. 3.
    Duda, R. and P.E. Hart (1973). Pattern classification and scene analysis. John Wiley & Sons, New York.Google Scholar
  4. 4.
    Franke, J. and E. Mandler (1992). A comparison of two approaches for combining the votes of cooperating classifiers, Proc. of 11 th. International Conference on Pattern Recognition, 611–614.Google Scholar
  5. 5.
    Ho, T.K., J.J. Hull and S.N. Srihari (1994). Decision combination in multiple classifier systems, IEEE Trans. on Pattern Analysis and Machine Intelligence 16, 66–75.Google Scholar
  6. 6.
    Jaromczyk, J.W. and G.T. Toussaint (1992). Relative neighbourhood graphs and their relatives, Proc. of IEEE 80, 1502–1517.Google Scholar
  7. 7.
    Kittler, J., M. Hatef and R.P.W. Duin (1996). Combining classifiers, Proc. of 13 th. International Conference on Pattern Recognition, 897–901.Google Scholar
  8. 8.
    Lam, L. and C.Y. Suen (1995). Optimal combinations of pattern classifiers, Pattern Recognition Letters 16, 945–954.Google Scholar
  9. 9.
    Pla, F., F. Juste, F.J. Ferri and M. Vicens (1993). Colour segmentation based on a light reflection model to locate citrus fruits for robotics harvesting, Computers and Electronics in Agriculture 9, 53–70.Google Scholar
  10. 10.
    Sánchez, J.S., F. Pla and F.J. Ferri (1997). On the use of neighbourhood-based non-parametric classifiers, Proc. of Pattern Recognition in Practice V (In press).Google Scholar
  11. 11.
    Toussaint, G.T., B.K. Bhattacharya and R.S. Poulsen (1985). The application of Voronoi diagrams to nonparametric decision rules, Computer Science and Statistics, 97–108.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • J. S. Sánchez
    • 1
  • F. Pla
    • 1
  • F. J. Ferri
    • 2
  1. 1.Departament d'InformàticaUniversitat Jaume ICastellóSpain
  2. 2.Departament d'Informàtica i ElectrónicaUniversitat de ValènciaBurjassot (València)Spain

Personalised recommendations