Analysis situs and image processing

  • Fridrich Sloboda
  • Bedrich Zat'ko
Poster Session A: Color & Texture, Enhancement, Image Analysis & Pattern Recognition, Segmentation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1310)

Abstract

In the paper a topological approach to approximation of planar Jordan curves and arcs is described. The approximation is based on the basic notions of intrinsic geometry of metric spaces: on the notion of a shortest path in a polygonaly bounded compact set and on the notion of a geodesic diameter of a polygon. Furthermore, a new linear time algorithm for the shortest path problem solution is described, and the approximation of the most important characteristic set in image processing is shown.

Keywords

Hessian Matrix Jordan Curve Planar Curf Simple Polygon Implicit Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.D. Alexandrov, Intrinsic Geometry of Convex Surfaces, (in Russian) OGIZ, Moscow (1948).Google Scholar
  2. 2.
    B. Chazelle, Triangulating a Simple Polygon in Linear Time, Discrete Comput. Geom. 6 (1991) 485–524.Google Scholar
  3. 3.
    B. Chazelle, A theorem on polygon cutting with applications, Proc. 23-rd Annual Symp. on Found. Comput. Sci. (1982) 339–349.Google Scholar
  4. 4.
    H. Enomoto, T. Katayama, Structure Lines of Images, Proc. of 3rd Int. Joint Conf. On Pattern Recognition, (1976) 811–815.Google Scholar
  5. 5.
    H. Hahn, Über die Komponenten offener Mengen, Fundamenta Math. (1921) 189–192.Google Scholar
  6. 6.
    D. T. Lee, F. P. Preparata, Euclidean Shortest Paths in the Presence of Rectilinear Barriers, Networks 14 (1984) 393–410.Google Scholar
  7. 7.
    D. Marr, E.C. Hildreth, Theory of Edge Detection, Proc. Roy. Soc. London (1980) 187–217.Google Scholar
  8. 8.
    S. Mazurkiewicz, Sur les lignes de Jordan, Fundamenta Math. (1920) 166–209.Google Scholar
  9. 9.
    K. Menger, Kurventheorie, B.G. Teubner Press, Leipzig, (1932).Google Scholar
  10. 10.
    J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equation in Several Variables, Academic Press, New York, London (1970).Google Scholar
  11. 11.
    A.S. Parchomenko, Was ist eine Kurve, VEB Deutscher Verlag der Wissenschaften, Berlin (1957) (original Moscow (1954)).Google Scholar
  12. 12.
    F. Sloboda, J. Stoer, On Piecewiese Linear Approximation of Planar Jordan Curves, J. Comp. Applied Mathematics 55 (1994) 369–383.Google Scholar
  13. 13.
    F. Sloboda, J. Stoer, On Piecewise Linear Approximation of Planar Jordan Arcs., Tech. Report of the Inst. of Control Theory and Robotics, Bratislava (1996).Google Scholar
  14. 14.
    F. Sloboda, B. Zat'ko, On Linear Time Algorithm for the Shortest Path Problem in a Polygonally Bounded Compact Set, Techn. Report of the Inst. of Control Theory and Robotics, Bratislava (1996).Google Scholar
  15. 15.
    F. Sloboda, B. Zafko, On Approximation of Planar Jordan Curves and Arcs in Implicit Forms, Techn. Report of the Inst. of Control Theory and Robotics, Bratislava (1997).Google Scholar
  16. 16.
    S. Suri, The All Geodesic-Further Neighbours Problem for Simple Polygons, Proc. Third Ann. Symp. on Comp. Geom. (1987) 64–75. 17. P. Urysohn, Mémoire sur les multiplicités Cantoriennes, Fundamenta Math. (1925), 30–130.Google Scholar
  17. 18.
    A. H. Wallace, Differential Topology, N. Y., W. A. Benjamin, (1968).Google Scholar
  18. 19.
    Y. Watanabe, Structural Features of Three-Dimensional Images, Proc. 1st Int. Symp. for Science on Form, KTK Scientific Publ. Tokyo, (1986) 247–254.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Fridrich Sloboda
    • 1
  • Bedrich Zat'ko
    • 1
  1. 1.Institute of Control Theory and RoboticsSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations