Advertisement

A computational approach to color illusions

  • Daniele Marini
  • Alessandro Rizzi
Poster Session A: Color & Texture, Enhancement, Image Analysis & Pattern Recognition, Segmentation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1310)

Abstract

Tri-stimulus theory of color perception is not able to justify effectively some well known perception phenomena as color illusions and color constancy. Retinex theory, by Land and McCann, grounds color perception on a color space based on three lightness computed as relative reflectance along multiple exploration paths of the perceived scene. This paper considers in a new light Retinex theory, as a theory which tries to justify not only color constancy but also illusions arising from simultaneous contrast configurations. An improvement to Retinex computational model is presented in the paper, which selects Retinex computation paths by approximating a brownian path. The algorithm has been tested not only on traditional Mondrian patches, but also on natural pictures and photographs and on typical color illusion patches. The examples demonstrate the ability of the model to emulate human color perception behavior.

Keywords

Color Vision Human Visual System Color Perception Color Constancy Color Figure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Albers J. Interaction of Color, Yale University Press, New Haven (1975)Google Scholar
  2. [2]
    Brainard D.H. and Wandell B.A., “Analysis of the Retinex theory of color vision”, JOSA-A, 3(10), 1651–1661 (1986)Google Scholar
  3. [3]
    D'Zmura] M., Lennie P. “Mechanisms of Color Constancy”, Journal of Optical Society of America, 3,10, 1662–1672 (1986)Google Scholar
  4. [4]
    Itten J. Kunst der Farbe, Otto Meier Verlag, Ravensburg (1970)Google Scholar
  5. [5]
    Judd. D.B. “Appraisal of Land's work on two-primary color projections”, Journal of Optical Society of America 50, 254–268 (1960)Google Scholar
  6. [6]
    Land E. and McCann J., “Lightness and Retinex Theory”, Journal of Optical Society of America, 61,1, 1–11 (1971)Google Scholar
  7. [7]
    Land E., “Recent Advances in Retinex Theory and Some Implications for Cortical Computations: Color Vision and the Natural image”, Proc. Natl. Acad. Sci. USA, Vol. 80, 5163–5169 (1983)Google Scholar
  8. [8]
    Land E., “The Retinex Theory of Color Vision”, Scientific American, 237, 3, 217 (1977)Google Scholar
  9. [9]
    Landy M.S., Movshon J.A. Ed.s Computational Models of Visual Processing, The MIT Press, Boston (1991)Google Scholar
  10. [10]
    [10]Luong Quang-Tuan, “La Couleur en Vision par Ordinateur: 1. une Revue”, Rapports de Recherche INRIA, n. 1251 (1990)Google Scholar
  11. [11]
    [11]Maloney L.T., Wandell R.A. “Color Constancy: A Method for Recovering Surface Spectral Reflectance”, Journal of Optical Society of America, 3,1, 29–33 (1986)Google Scholar
  12. [12]
    [12]McCann J.J. & Houston K.L., “Calculating Colour Sensation from Arrays of Physical Stimuli”, IEEE Transaction on SMC, SMC-13, 5, 1000–1007 (1983)Google Scholar
  13. [13]
    [13]Saupe D. “Algorithms for random fractals” in: Barnsley et alt. The Science of Fractal Images, Springer Verlag, New York (1988) IEEE Computer Graphics & Applications, November (1993)Google Scholar
  14. [14]
    [14]von Helmholtz, H., Optique physiologique, Paris, Edition Jacques Gabay, trad. par Javal E. et Klein N.Th. (1989)Google Scholar
  15. [15]
    [15]Wandell B.A., Fundations of Vision, Sinauer Associates Inc. Publishers, Sunderland, Massachusetts (1995)Google Scholar
  16. [16]
    [16]Wyszecky G., Stiles W.S., Color Science: Concepts and Methods, Quantitative Data and Formulas, J. Wiley & Sons, New York (1982) the II Annual Bionics Symposium, Vol.1, 126–141 (1961)Google Scholar
  17. [17]
    [17]Zeki S. A Vision of the Brain, Blackwell Scientific Pub., Oxford (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Daniele Marini
    • 1
  • Alessandro Rizzi
    • 2
  1. 1.Dipartimento di Scienze della InformazioneUniversità degli Studi di MilanoMilanoItaly
  2. 2.Dipartimento di Elettronica per l'AutomazioneUniversità degli Studi di BresciaBresciaItaly

Personalised recommendations