Smoothing noisy images without destroying predefined feature carriers

  • Andrzej J. Kasinski
Poster Session I
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1296)


We address the problem of smoothing gray-level images without destroying feature carriers. Smoothing is performed to suppress high, spatial-frequency noise in the image, whose relevant features contain high spatial-frequency components. The separation is obtained by using a heuristical image-surface geometry criterion over 5x5 mask. Pixel classification results with bit-fields associated with image processing tasks such as noise suppression, edge and/or some 2D-features extraction. We demonstrate the results on standard benchmark image disturbed by uncorrelated gaussian noise. Peformance of some filters applied to feature-less domains of the image is compared.


smoothing feature extraction segmentation grouping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ben-Arie J. and K.R. Rao: A Novel Approach for Template Matching by Non-Orthogonal Image Expansion, IEEE Trans. Circ. & Syst. for Video Techn., vol.3, no. 1, pp.71–84, 1993.Google Scholar
  2. Deriche, R.: Usind Canny's Criteria to Derive a Recursively Implemented Optimal Edge Detector, Int. J. of Comp. Vision, 1987, pp. 167–I87.Google Scholar
  3. Dougherty E.R and Ph.A. Laplante: Nonlinear Real-Time Image Processing Algorithms, in: Real-Time Imaging, P. Laplante & A. Stoyenko Eds., IEEE Press, New York 1996, pp.3–26.Google Scholar
  4. Kasinski A. and L.Noriega. Image Texture Segmentation Using Microstructural Features. 1997, submited for publication.Google Scholar
  5. Kulikowski J.L.: Basic concepts in the theory and design of logical filters. Mach. Graph. & Vision Int. J., vol.3, no. 3/96, pp.465–482, 1996.Google Scholar
  6. Petrou M. and J. Kittler: Optimal Edge Detectors for Ramp Edges, IEEE Trans. on Pattern Anal.&Mach. Intell., vol.13, no5/May 91, pp.483–495. 1991.Google Scholar
  7. Sarkar S.and K.L. Boyer: Optimal Infinite Impulse Response Zero Crossing Based Edge Detectors, CVGIP: Image Understanding, vol.54, Sept. 1991, pp.224–243.CrossRefGoogle Scholar
  8. Smith S.M. and J.M. Brady: SUSAN — a new approach to low level image processing. (to be published in 1996, in Int. J. of Comp.Vision).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Andrzej J. Kasinski
    • 1
    • 2
  1. 1.Katedra Automatyki, Robotyki i InformatykiPolitechnika PoznanskaPoznanPoland
  2. 2.Grupo Vision y RoboticaUniversidad de MurciaCartagena,Paseo Alfonso XIIISpain

Personalised recommendations