Advertisement

Smoothing noisy images without destroying predefined feature carriers

  • Andrzej J. Kasinski
Poster Session I
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1296)

Abstract

We address the problem of smoothing gray-level images without destroying feature carriers. Smoothing is performed to suppress high, spatial-frequency noise in the image, whose relevant features contain high spatial-frequency components. The separation is obtained by using a heuristical image-surface geometry criterion over 5x5 mask. Pixel classification results with bit-fields associated with image processing tasks such as noise suppression, edge and/or some 2D-features extraction. We demonstrate the results on standard benchmark image disturbed by uncorrelated gaussian noise. Peformance of some filters applied to feature-less domains of the image is compared.

Keywords

smoothing feature extraction segmentation grouping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Arie J. and K.R. Rao: A Novel Approach for Template Matching by Non-Orthogonal Image Expansion, IEEE Trans. Circ. & Syst. for Video Techn., vol.3, no. 1, pp.71–84, 1993.Google Scholar
  2. Deriche, R.: Usind Canny's Criteria to Derive a Recursively Implemented Optimal Edge Detector, Int. J. of Comp. Vision, 1987, pp. 167–I87.Google Scholar
  3. Dougherty E.R and Ph.A. Laplante: Nonlinear Real-Time Image Processing Algorithms, in: Real-Time Imaging, P. Laplante & A. Stoyenko Eds., IEEE Press, New York 1996, pp.3–26.Google Scholar
  4. Kasinski A. and L.Noriega. Image Texture Segmentation Using Microstructural Features. 1997, submited for publication.Google Scholar
  5. Kulikowski J.L.: Basic concepts in the theory and design of logical filters. Mach. Graph. & Vision Int. J., vol.3, no. 3/96, pp.465–482, 1996.Google Scholar
  6. Petrou M. and J. Kittler: Optimal Edge Detectors for Ramp Edges, IEEE Trans. on Pattern Anal.&Mach. Intell., vol.13, no5/May 91, pp.483–495. 1991.Google Scholar
  7. Sarkar S.and K.L. Boyer: Optimal Infinite Impulse Response Zero Crossing Based Edge Detectors, CVGIP: Image Understanding, vol.54, Sept. 1991, pp.224–243.CrossRefGoogle Scholar
  8. Smith S.M. and J.M. Brady: SUSAN — a new approach to low level image processing. (to be published in 1996, in Int. J. of Comp.Vision).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Andrzej J. Kasinski
    • 1
    • 2
  1. 1.Katedra Automatyki, Robotyki i InformatykiPolitechnika PoznanskaPoznanPoland
  2. 2.Grupo Vision y RoboticaUniversidad de MurciaCartagena,Paseo Alfonso XIIISpain

Personalised recommendations