Advertisement

Morphological grain operators for binary images

  • Henk J. A. M. Heijmans
Mathematical Morphology
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1296)

Abstract

Connected morphological operators act on the level of the flat zones of an image, i.e., the connected regions where the grey-level is constant. For binary images, the flat zones are the foreground and background grains (connected components) of the image. A grain operator is a special kind of connected operator that uses only local information about grains: grain operators do not require information about neighbouring grains. This paper discusses connected morphological operators for binary images, with an emphasis on grain operators and grain filters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Breen and R. Jones. An attribute-based approach to mathematical morphology. In P. Maragos, R. W. Schafer, and M. A. Butt, editors, Mathematical Morphology and its Application to Image and Signal Processing, pages 41–48. Kluwer Academic Publishers, Boston, 1996.Google Scholar
  2. 2.
    J. Crespo. Morphological connected filters and intra-region smoothing for image segmentation. PhD thesis, Georgia Institute of Technology, Atlanta, 1993.Google Scholar
  3. 3.
    J. Crespo and R. W. Schafer. Locality and adjacency stability constraints for morphological connected operators. Journal of Mathematical Imaging and Vision, 7(1):85–102, 1997.CrossRefGoogle Scholar
  4. 4.
    J. Crespo, J. Serra, and R. W. Schafer. Image segmentation using connected filters. In J. Serra and P. Salembier, editors, Mathematical Morphology and its Applications to Signal Processing, pages 52–57. Universitat Politècnica de Catalunya, 1993.Google Scholar
  5. 5.
    J. Crespo, J. Serra, and R. W. Schafer. Theoretical aspects of morphological filters by reconstruction. Signal Processing, 47(2):201–225, 1995.CrossRefGoogle Scholar
  6. 6.
    H. J. A. M. Heijmans. Morphological Image Operators. Academic Press, Boston, 1994.Google Scholar
  7. 7.
    H. J. A. M. Heijmans. Self-dual morphological operators and filters. Journal of Mathematical Imaging and Vision, 6(1):15–36, 1996.CrossRefGoogle Scholar
  8. 8.
    H. J. A. M. Heijmans. Connected morphological operators for binary images. Research Report PNA-119708, CWI, 1997.Google Scholar
  9. 9.
    H. J. A. M. Heijmans and C. Ronse. Annular filters for binary images. Research report BS-119604, CWI, 1996. Submitted to IEEE Trans. Image Proc.Google Scholar
  10. 10.
    M. Pardàs, J. Serra, and L. Torres. Connectivity filters for image sequences. In Image Algebra and Morphological Image Processing III, volume 1769, pages 318–329. SPIE, 1992.Google Scholar
  11. 11.
    P. Salembier and M. Kunt. Size-sensitive multiresolution decomposition of images with rank order based filters. Signal Processing, 27(2):205–241, 1992.CrossRefGoogle Scholar
  12. 12.
    P. Salembier and A. Oliveras. Practical extensions of connected operators. In P. Maragos, R. W. Schafer, and M. A. Butt, editors, Mathematical Morphology and its Application to Image and Signal Processing, pages 97–110. Kluwer Academic Publishers, Boston, 1996.Google Scholar
  13. 13.
    P. Salembier and J. Serra. Flat zones filtering, connected operators, and filters by reconstruction. IEEE Transactions on Image Processing, 4(8):1153–1160, 1995.CrossRefGoogle Scholar
  14. 14.
    J. Serra, editor. Image Analysis and Mathematical Morphology. II: Theoretical Advances. Academic Press, London, 1988.Google Scholar
  15. 15.
    L. Vincent. Morphological area openings and closings for grey-scale images. In Y.-L. O, A. Toet, D. Foster, H. J. A. M. Heijmans, and P. Meer, editors, Proceedings of the Workshop “Shape in Picture”, 7–11 September 1992, Driebergen, The Netherlands, pages 197–208, Berlin, 1994. Springer.Google Scholar
  16. 16.
    L. Vincent and E. R. Dougherty. Morphological segmentation for textures and particles. In E. R. Dougherty, editor, Digital Image Processing Methods, pages 43–102. Marcel Dekker, New York, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Henk J. A. M. Heijmans
    • 1
  1. 1.CWIGB AmsterdamThe Netherlands

Personalised recommendations