Advertisement

Optimization of stereo disparity estimation using the instantaneous frequency

  • M. Hansen
  • K. Daniilidis
  • G. Sommer
Stereo and Correspondence
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1296)

Abstract

The use of phase differences from Gabor filter responses is a well established technique for the computation of stereo disparity. It achieves the subpixel estimation of disparity without applying a correspondence search. However, the problem of scale or central frequency selection is still unsolved. Here, we study the effects of varying filter frequency on the disparity estimation and we compare it to the use of the instantaneous frequency. The analytical results on several models of intensity and disparity variation show robustness of the disparity estimates against variations in the filter-wavelength.

Keywords

Instantaneous Frequency Gabor Filter Constant Model Local Phase Signal Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Boashash. Estimating and interpreting the instantaneous frequency of a signalpart 1: Fundamentals. Proceedings of the IEEE, 80:520–539, 1992.CrossRefGoogle Scholar
  2. 2.
    U.R. Dhond and J.K. Aggarawal. Structure from stereo-a review. IEEE Trans. Syst. Man. and Cyber., 19, 1489–1510 1989.CrossRefGoogle Scholar
  3. 3.
    D. J. Fleet, A. D. Jepson, and M. R. M. Jenkin. Phase-based disparity measurement. CVGIP: Image Understanding, 53(2), 3 1991.CrossRefGoogle Scholar
  4. 4.
    K. Langley, T.J. Atherton, R.G. Wilson, and M.H.E. Larcombe. Vertical and horizontal disparities from phase. In Proc. First European Conference on Computer Vision, pages 315–325. Antibes, France, Apr. 23–26, O.D. Faugeras (Ed.), Lecture Notes in Computer Science 427, Springer-Verlag, Berlin et al., 1990.Google Scholar
  5. 5.
    A. Maki, L. Bretzner, and J.-O. Eklundh. Local fourier phase and disparity estimation: An analytical study. In V. Hlavac et al. (Ed.), Pro c. Int. Conf. Computer Analysis of Images and Patterns CAIP, Prag, pages 868–874, 1995.Google Scholar
  6. 6.
    T.D. Sanger. Stereo disparity computation using gabor filters. Biol. Cybernetics, 59:405–418, 1988.CrossRefGoogle Scholar
  7. 7.
    W. M. Theimer and H. P. Mallot. Phase-based binocular vergence control and depth reconstruction using active vision. CVGIP: Image Understanding, 60(2):343–358, 12 1994.Google Scholar
  8. 8.
    C.J. Westelius, H. Knutsson, J. Wiklund, and C.F. Westin. Phased-based disparity estimation. In J.L. Crowley and H.I. Christensen, editors, Vision as Process, pages 157–178. Springer Verlag, Berlin et al., 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • M. Hansen
    • 1
  • K. Daniilidis
    • 1
  • G. Sommer
    • 1
  1. 1.Institut für Informatik und Prakt. MathematikChristian-Albrechts Universität KielKiel

Personalised recommendations