Skip to main content

Lexical acquisition and information extraction

Part of the Lecture Notes in Computer Science book series (LNAI,volume 1299)

Keywords

  • Natural Language Processing
  • Machine Translation
  • Word Sense
  • Word Sense Disambiguation
  • Lexical Information

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. In Proceedings of A CL Conference on Very Large Corpora, 92–97.

    Google Scholar 

  2. In Proceedings of Conference on Emprical Natural language Processing, 96–97.

    Google Scholar 

  3. In Proceedings of Conference on New Methodologies for Language Processing, 94–96.

    Google Scholar 

  4. Computational Linguistics, Special Issue on Very Large Corpora, 1993.

    Google Scholar 

  5. Ecran: Extraction of content: Research at near-market. Technical report, EC ES-PRIT-LE n. 2110, 1995.

    Google Scholar 

  6. Facile: Fast and accurate categorisation of information by language engineering. Technical report, EC ESPRIT-LE, 1995.

    Google Scholar 

  7. Proceedings of the sixth message understanding conference (muc-6). In Columbia, MD,. Morgan Kaufmann, 1995.

    Google Scholar 

  8. S. Abney. Parsing by chuncks. In Principle-Based Parsing. Kluwer Academic Press, 1991.

    Google Scholar 

  9. H. Alshawi. Qualitative and quantitative models of speech translation. In Proc. of the A CL Workshop, The Balancing Act, Las Cruces, New Mexico, USA, 1994.

    Google Scholar 

  10. D. Appelt, J. Hobbs, J. Bear, D. Israel, and T. Mabry. Fastus: a finite-state pro-cessor for information extraction from real-world text. In Proc. of the International Joint Conference on Artificial Intelligence, 1993.

    Google Scholar 

  11. R. Basili, G. De Rossi, and M.T. Pazienza. Inducing terminology for lexical acqui-sition. In Proceedings of the Second Conference on Empirical Methods in Natural Language Processing, Providence, USA, 1997.

    Google Scholar 

  12. R. Basili, M. Della Rocca, and M.T. Pazienza. Contextual word sense tuning and disambiguation. Journal of Applied Artificial Intelligence, 1996.

    Google Scholar 

  13. R. Basili, M. Della Rocca, M.T. Pazienza, and P. Velardi. Contexts and categories: tuning a general purpose verbclassification to sublanguages. In Proc. of Inter-national Conference on Recent Advances in Natural Language Processing, Tzigov Chark, Bulgaria, 1995.

    Google Scholar 

  14. R. Basili, F. Grisoli, and M.T. Pazienza. Might a semantic lexicon support hyper-textul authoring? In Proc of the 4th A CL Applied Natural Language Processing, Stuttgart (Germany, 1994.

    Google Scholar 

  15. R. Basili, A. Marziali, and M.T. Pazienza. Modelling syntactic uncertainty in lex-ical acquisition from texts. Journal of Quantitative Linguistics, 1, 1994.

    CrossRef  Google Scholar 

  16. R. Basili, A. Marziali, M.T. Pazienza, and P. Velardi. Unsupervised learning of syntactic knowledge: Methods and measures. In Proceedings of the International Conference on Empirical Methods in Natural Language Processing, Philadelfia, Pennsylvania, 1996.

    Google Scholar 

  17. R. Basili, M.T. Pazienza, and P. Velardi. Computational lexicons: the neat ex-amples and the odd exemplars. In Proc. of Third Int. Conf. on Applied Natural Language Processing, Povo, Trento, Italy, 1992.

    Google Scholar 

  18. R. Basili, M.T. Pazienza, and P. Velardi. A shallow syntactic analyzer to extract word associations from corpora. Literary and Linguistic Computing, 7(2), 1992.

    CrossRef  Google Scholar 

  19. R. Basili, M.T. Pazienza, and P. Velardi. Acquisition of selectional patterns. Jour-nal of Machine Translation, 8, 1993.

    CrossRef  Google Scholar 

  20. R. Basili, M.T. Pazienza, and P. Velardi. Semi-automatic extraction of linguistic information for syntactic disambiguation. Applied Artificial Intelligence, 4, 1993.

    Google Scholar 

  21. R. Basili, M.T. Pazienza, and P. Velardi. What can be learned from raw texts? Journal of Machine Translation, 8, 1993.

    CrossRef  Google Scholar 

  22. R. Basili, M.T. Pazienza, and P. Velardi. A context driven conceptual clustering method for verb classification. MIT Press, 1996.

    Google Scholar 

  23. R. Basili, M.T. Pazienza, and P. Velardi. An empirical symbolic approach to nat-ural language processing. Artificial Intelligence, 85, 1996.

    Google Scholar 

  24. R. Basili, M.T. Pazienza, and P. Velardi. Integrating general purpose and corpus-based verb classifications. Computational Linguistics, 1996.

    Google Scholar 

  25. R. Basili, M. Vindigni, and M.T. Pazienza. Corpus-driven unsupervised learning of verb subcategorization frames. In Proc. Of Conference of the Italian Association for Artificial Intelligence, AI*IA 97, Rome, 1997.

    Google Scholar 

  26. R. Bod. Using an annotated corpus as a stochastic grammar. In Proceedings of the European Chapter of A CL (EACL-93), 1993.

    Google Scholar 

  27. B. K. Boguraev and T. Briscoe. Computational Lexicography for Natural Language Processing. Longman Group, 1989.

    Google Scholar 

  28. A. Bolioli, L. Dini, V. Di Tomaso, A. Goy, and D. Sestero. From it to ie through gl. In Proc. of International Workshop on Lexically-Driven Information Extraction, 1997.

    Google Scholar 

  29. E. Brill. A simple rule-based part of speech tagger. In Proc. of the Third Applied Natural Language Processing, Povo, Trento, Italy, 1992.

    Google Scholar 

  30. E. Brill and P. Resnik. A rule based approach to prepositional phrase attachment disambiguation. In Proc. of COLING-94, Kyoto, Japan, 1994.

    Google Scholar 

  31. L. Brown. Class-based language models. Computational Lingustics, 1994.

    Google Scholar 

  32. P. Brown, J. Cocke, S. Della Pietra, V. Della Pietra, F. Jelinek, R. Lafferty J.and Mercer, and P. Rossin. A statistical approach to machine translation. Com-putational Linguistics, 16(2), 1990.

    Google Scholar 

  33. P. Brown, S. Della Pietra, V. Della Pietra, J. Lai, and R. Mercer. An estimate of an upper bound for the entropy of english. Computational Linguistics, 18(1), 1992.

    Google Scholar 

  34. P. Buitelar. A lexicon for underspecified semantic tagging. In Proc. of the Applied Natural Language Processing 97 Workshop on “Tagging text with lexical seman-tics”, 1997.

    Google Scholar 

  35. C. Cardie. Embedded Machine Learning Systems for Natural Language Processing: A General Framework. Lecture Notes in Artificial Intelligence, Springer, 1996. Originally presented at the Workshop on New Approaches to Learning for Natural Language Processing, 14th International Joint Conference on Artificial Intelligence (IJCAI-95), 119–126, 1995. AAAI Press.

    Google Scholar 

  36. J.P. Chanod and P. Tapanainen. A robust finite-state parser for french. In J. Carrol, editor, Proceedings of the ESSLI-96 Workshop on Robust Parsing, Prague, 1996.

    Google Scholar 

  37. K. A. Church. A stochastic parts program and noun phrase parser for unrestricted text. In Proc. of Second Conference on Applied Natural Language Processing, 1988.

    Google Scholar 

  38. M. Collins and J. Brooks. Prepositional phrase attachment trough a backed-off model. In 3rd. A CL Workshop on Very Large Corpora, 1995.

    Google Scholar 

  39. J. Cowie, L. Guthrie, and J. Guthrie. Lexical disambiguation using simulated an-nealing. In Proc. of COLING-92, Nantes, France, 1992.

    Google Scholar 

  40. J. Cowie and W. Lehnert. Information extraction. Special NLP Issue of the Com-munications of the ACM, 1996.

    CrossRef  Google Scholar 

  41. A. Cucchiarelli and P. Velardi. Automatic selection of class labels from a thesaurus for an effective semantic tagging of corpora. In Proc. of Fifth Applied Natural Language Processing, Washington DC, 1997.

    Google Scholar 

  42. H. Cunningham, K. Humphreys, R. Gaizauskas, and J. Wilks. Software infrastruc-ture for natural language processing. In Proc. of Fifth Applied Natural Language Processing, Washington DC, 1997.

    Google Scholar 

  43. I. Dagan, M. Marcus, and S. Markovitch. Contextual word similarity and estima-tion from sparse data. In Proc. of A CL-93, Ohio, USA, 1993.

    Google Scholar 

  44. R. Del Monte. Linguistic and Inferential Processes in text analysis by computer. UniPress, 1992.

    Google Scholar 

  45. M. Even. The relational models of the lexicon. Cambridge University Press, 1989.

    Google Scholar 

  46. A. Franz. A statistical approach to learning prepositional phrase attachment dis-ambiguation. In Proc. of IJCAI-95 WorkShop on “New Approaches to Learning for NLP”, 1995.

    Google Scholar 

  47. R. Gaizauskas, T. Wakao, K. Humphreys, H. Cunningham, and Y. Wilks. Univer-sity of sheffield: Description of the LaSIE System as used for MUC-6. In Proceed-ings of the Sixth Message Understanding Conference (MUC-6), Columbia, Mary-land, USA, November 1995.

    Google Scholar 

  48. R. Grishman. Where is the syntax? In MUC-6, 1996.

    Google Scholar 

  49. R. Grishman and J. Sterling. Generalizing automatically generated selectional pat-terns. In Proc. of COLING-94, Kyoto, Japan, 1994.

    Google Scholar 

  50. L. Guthrie, J. Pustejovsky, Y. Wilks, and B Slator. The role of lexicons in natural language processing. Communications of ACM, 39(1), 1996.

    CrossRef  Google Scholar 

  51. D. Hindle. Acquiring disambiguation rules from text. In Proc. of ACL-89, 1989.

    Google Scholar 

  52. D. Hindle and M. Rooths. Structural ambiguity and lexical relation. Computa-tional Linguistics, 19(1), 1993.

    Google Scholar 

  53. J. Hobbs. The generic information extraction system. In Fourth Message Under-standing Conference, McLean, Virginia, 1992.

    Google Scholar 

  54. P. Jacobs. Text-based intelligent systems. In Working Notes of the AAAI Sympo-sium, Stanford University, 1990.

    Google Scholar 

  55. K. Jensen, G.H. Heidorn, and S.D. Richardson, editors. Natural Language processing: the PLNLP approach. Kluwer Academic, Boston/Dordrecht/London, 1993.

    Google Scholar 

  56. M. Johnston, B.K. Boguraev, and J. Pustejovsky. The acquisition and interpreta-tion iof complex nominals. In Working Notes of AAAI Workshop on “Representa-tion and Acquisition of Lexical Knowledge: Polysemy, Ambiguity and Generativity, Stanford University, CA, 1995.

    Google Scholar 

  57. A. Kilgariff. Foreground and background lexicons and word sense disambiguation for information extraction. In Proc. of International Workshop on Lexically-Driven Information Extraction, 1997.

    Google Scholar 

  58. A. Luk, B. Vauthey, and O. Ansaldi. Acquisition of domain specific salient se-mantic features for information extraction. In Proc. of International Workshop on Lexically-Driven Information Extraction, 1997.

    Google Scholar 

  59. M. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large annotated corpus of english: the perm treebank. Computational Linguistics, 19(2), 1993.

    Google Scholar 

  60. S. McRoy. Using multiple knowledge sources for word sense disambiguation. Com-putational Linguistics, 18(1, 1992.

    Google Scholar 

  61. S. Montemagni and L. Vanderwelde. Structural patterns vs. string patterns for ex-tracting semantic information from dictionaries. In Proc. of COLING-92, Nantes, France, 1992.

    Google Scholar 

  62. J. Neumann, J. Backofen, R.and Baur, M. Becker, and C. Braun. An information extraction core system for real-world german text processing. In Proc. of Fifth Conference on Applied Natural Language Processing, Washington DC, USA, 1997.

    Google Scholar 

  63. H.T. Ng and H.B. Lee. Integrating multiple knowledge sources to disambiguate word senses: an exemplar-based approach. In Proc. of ACL-96, 1996.

    Google Scholar 

  64. F. Pereira, N. Tishby, and L. Lee. Distributional clustering of english words. In Proc. of ACL-93, 1993.

    Google Scholar 

  65. C. Pollard and I. Sag. Information Based Syntax and Semantics, Vol 1: Funda-mentals. CSLI n. 13, distributed by Chicago University Press, 1987.

    Google Scholar 

  66. J. Pustejovsky. The generative lexicon. Computational Linguistics, 17, 1991.

    Google Scholar 

  67. J. Pustejovsky. Type Cohercion and Lexical Selection. 1993.

    Google Scholar 

  68. J. Pustejovsky. The Generative Lexicon. MIT Press, 1995.

    Google Scholar 

  69. J. Pustejovsky, S. Bergler, and P. Anick. Lexical semantic techniques for corpus analysis. Computational Linguistics, 19(2), 1993.

    Google Scholar 

  70. P. S. Resnik. Selection and Information: A Class-Based Approach to Lexical Re-lationships. PhD thesis, Pennsylvania University, 1994.

    Google Scholar 

  71. E. Riloff and J. Shepherd. A corpus-based approach for building semantic lexicons. In Proc. of EMNLP-97, Rodhe Island, USA, 1997.

    Google Scholar 

  72. G. Ritchie. The Lexicon. 1987.

    Google Scholar 

  73. G. Salton, A. Wong, and C.S. Yang. A vector space model for automatic indexing. Communications of the ACM, 18(11), 1975.

    CrossRef  Google Scholar 

  74. F. Smadja. Macrocoding the Lexicon with co-occurrence knowledge. Zernik, U.,ed. “Lexical Acquisition” Lawrence Erlbaum, 1991.

    Google Scholar 

  75. J. Sowa. Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, 1984.

    Google Scholar 

  76. J. Sowa. Lexical Structures and Conceptual Structures, chapter 12. J. Pustejovsky Ed., “The Semantics and the Lexicon”, Kluwer, 1993.

    Google Scholar 

  77. Y. Wilks, D. Fass, C.M. Guo, J. McDonald, T. Blate, and B. Slator. Providing Machine Tractable Dictionary Tools, chapter 16. in Pustejovsky ed., “The Seman-tics and the Lexicon”, Kluwer, 1993.

    Google Scholar 

  78. Y. A. Wilks and M. Stevenson. The grammar of sense: Is word-sense tagging much more than part-of-speech tagging ? In Technical Report CS-96-05, University of Sheffield, 1996.

    Google Scholar 

  79. D. Yarowsky. Word sense disambiguation using statistical models of roget's cate-gories trained on large corpora. In Proc. of COLING-92, Nantes, France, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Basili, R., Pazienza, M.T. (1997). Lexical acquisition and information extraction. In: Pazienza, M.T. (eds) Information Extraction A Multidisciplinary Approach to an Emerging Information Technology. SCIE 1997. Lecture Notes in Computer Science, vol 1299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63438-X_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-63438-X_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63438-6

  • Online ISBN: 978-3-540-69548-6

  • eBook Packages: Springer Book Archive