Advertisement

Denesting by bounded degree radicals

  • Johannes Blömer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1284)

Abstract

Given a nested radical α involving only dth roots we show how to compute an optimal or near optimal depth denesting of α by a nested radical that only involves Dth roots, where D is an arbitrary multiple of d. As a special case the algorithm computes denestings as in

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Babai, E. Luks, Á. Seress: Fast management of permutation groups. Proc. 29th Symposium on Foundations of Computer Science (1988) pp. 272–282.Google Scholar
  2. 2.
    J. Blömer: Computing Sums of Radicals in Polynomial Time. Proc. 32nd Symposium on Foundations of Computer Science (1991) pp. 670–677.Google Scholar
  3. 3.
    J. Blömer: Denesting Ramanujan's Nested Radicals. Proc. 33nd Symposium on Foundations of Computer Science (1992) pp. 447–456.Google Scholar
  4. 4.
    A. Borodin, R. Fagin, J. E. Hopcroft, M. Tompa: Decreasing the Nesting Depth of Expressions Involving Square Roots. Journal of Symbolic Computation 1 (1985) pp. 169–188.Google Scholar
  5. 5.
    B. Caviness, R. Fateman: Simplification of Radical Expressions. Proc. 1976 ACM Symposium on Symbolic and Algebraic Computation (1976).Google Scholar
  6. 6.
    G. Horng, M.-D. Huang: Simplifying Nested Radicals and Solving Polynomials by Radicals in Minimum Depth. Proc. 31st Symposium on Foundations of Computer Science (1990) pp. 847–854.Google Scholar
  7. 7.
    S. Lang: Algebra, 3rd edition. (1993) Addison-Wesley.Google Scholar
  8. 8.
    S. Landau: Factoring polynomials over algebraic number fields. SIAM Journal on Computing 14(1) (1985) pp. 184–195.Google Scholar
  9. 9.
    S. Landau: Simplification of Nested Radicals. SIAM Journal on Computing 21(1) (1992) pp 85–110.Google Scholar
  10. 10.
    S. Landau: A Note on Zippel-Denesting. Journal of Symbolic Computation 13 (1992) pp. 41–46.Google Scholar
  11. 11.
    S. Landau: How to Tangle with a Nested Radical. Mathematical Intelligencer 16(2) (1994) pp. 49–55.Google Scholar
  12. 12.
    S. Landau, G. L. Miller: Solvability by Radicals is in Polynomial Time. Journal of Computer and System Sciences 30 (1985) pp. 179–208.Google Scholar
  13. 13.
    S. Ramanujan: Problems and Solutions, Collected Works of S. Ramanujan (1927) Cambridge University Press.Google Scholar
  14. 14.
    R. Zippel: Simplification of Expressions Involving Radicals. Journal of Symbolic Computation 1 (1985) pp. 189–210.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Johannes Blömer
    • 1
  1. 1.Institut für Theoretische Informatik, Eidgenössische Technische Hochschule ZürichZurichSwitzerland

Personalised recommendations