Denesting by bounded degree radicals

  • Johannes Blömer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1284)


Given a nested radical α involving only dth roots we show how to compute an optimal or near optimal depth denesting of α by a nested radical that only involves Dth roots, where D is an arbitrary multiple of d. As a special case the algorithm computes denestings as in


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Babai, E. Luks, Á. Seress: Fast management of permutation groups. Proc. 29th Symposium on Foundations of Computer Science (1988) pp. 272–282.Google Scholar
  2. 2.
    J. Blömer: Computing Sums of Radicals in Polynomial Time. Proc. 32nd Symposium on Foundations of Computer Science (1991) pp. 670–677.Google Scholar
  3. 3.
    J. Blömer: Denesting Ramanujan's Nested Radicals. Proc. 33nd Symposium on Foundations of Computer Science (1992) pp. 447–456.Google Scholar
  4. 4.
    A. Borodin, R. Fagin, J. E. Hopcroft, M. Tompa: Decreasing the Nesting Depth of Expressions Involving Square Roots. Journal of Symbolic Computation 1 (1985) pp. 169–188.Google Scholar
  5. 5.
    B. Caviness, R. Fateman: Simplification of Radical Expressions. Proc. 1976 ACM Symposium on Symbolic and Algebraic Computation (1976).Google Scholar
  6. 6.
    G. Horng, M.-D. Huang: Simplifying Nested Radicals and Solving Polynomials by Radicals in Minimum Depth. Proc. 31st Symposium on Foundations of Computer Science (1990) pp. 847–854.Google Scholar
  7. 7.
    S. Lang: Algebra, 3rd edition. (1993) Addison-Wesley.Google Scholar
  8. 8.
    S. Landau: Factoring polynomials over algebraic number fields. SIAM Journal on Computing 14(1) (1985) pp. 184–195.Google Scholar
  9. 9.
    S. Landau: Simplification of Nested Radicals. SIAM Journal on Computing 21(1) (1992) pp 85–110.Google Scholar
  10. 10.
    S. Landau: A Note on Zippel-Denesting. Journal of Symbolic Computation 13 (1992) pp. 41–46.Google Scholar
  11. 11.
    S. Landau: How to Tangle with a Nested Radical. Mathematical Intelligencer 16(2) (1994) pp. 49–55.Google Scholar
  12. 12.
    S. Landau, G. L. Miller: Solvability by Radicals is in Polynomial Time. Journal of Computer and System Sciences 30 (1985) pp. 179–208.Google Scholar
  13. 13.
    S. Ramanujan: Problems and Solutions, Collected Works of S. Ramanujan (1927) Cambridge University Press.Google Scholar
  14. 14.
    R. Zippel: Simplification of Expressions Involving Radicals. Journal of Symbolic Computation 1 (1985) pp. 189–210.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Johannes Blömer
    • 1
  1. 1.Institut für Theoretische Informatik, Eidgenössische Technische Hochschule ZürichZurichSwitzerland

Personalised recommendations