Advertisement

Scheduling independent multiprocessor tasks

  • A. K. Amoura
  • E. Bampis
  • C. Kenyon
  • Y. Manoussakis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1284)

Abstract

We study the problem of scheduling a set of n independent multiprocessor tasks with prespecified processor allocations on a fixed number of processors. We propose a linear time algorithm that finds a schedule of minimum makespan in the preemptive model, and a linear time approximation algorithm that finds a schedule of length within a factor of (1 + c) of optimal in the non-preemptive model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Bianco, J. Blazewicz, P. Dell'Olmo, and M. Drozdowski. Scheduling Preemptive Multiprocessor Tasks on Dedicated Processors. Performance Evaluation, 20:361–371, (1994)Google Scholar
  2. 2.
    J. Blazewicz, P. Dell'Olmo, M. Drozdowski, and M.G. Speranza. Scheduling Multiprocessor Tasks on Three Dedicated Processors. Information Processing Letters, 41:275–280, (1992)Google Scholar
  3. 3.
    J. Blazewicz, M. Drabowski, and J. Weglarz Scheduling multiprocessor tasks to minimize schedule length. IEEE Transactions on Computing, 35(5):389–393, (1986)Google Scholar
  4. 4.
    E. G. Coffman, M. R. Garey, D. S. Johnson, and A. S. Lapaugh. Scheduling file transfers. SIAM J. Compt., 14(3):744–780, (1985)Google Scholar
  5. 5.
    P. Dell'Olmo, M. G. Speranza, and Z. Tuza. Efficiency and Effectiveness of Normal Schedules on Three Dedicated Processors. Submitted.Google Scholar
  6. 6.
    M. Drozdowski. Scheduling Multiprocessor Tasks — An Overview. Private communication, (1996)Google Scholar
  7. 7.
    J. Du, and J. Y-T. Leung. Complexity of Scheduling Parallel Task Systems. SIAM J. Discrete Math., 2(4):473–487, (1989)Google Scholar
  8. 8.
    M. Garey, D. Johnson. Computers and Intractability, A Guide to the theory of NP-completeness. W. H. Freemann and Company, San Francisco, CA, (1979)Google Scholar
  9. 9.
    M. X. Goemans. An Approximation Algorithm for Scheduling on Three Dedicated Processors. Disc. App. Math., 61:49–59, (1995)Google Scholar
  10. 10.
    R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. AddisonWesley, Reading, MA, (1990)Google Scholar
  11. 11.
    R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnoy Kan. Optimization and Approximation in Deterministic Sequencing and Scheduling: A Survey. Ann. Disc. Math., 5:287–326, (1979)Google Scholar
  12. 12.
    L. A. Hall and D. B. Shmoys. Jackson's rule for single-machine scheduling: making a good heuristic better. Mathematics of Operations Research, 17:22–35, (1992)Google Scholar
  13. 13.
    J. Hoogeveen, S. L. van de Velde, and B. Veltman. Complexity of Scheduling Multiprocessor Tasks with Prespecifaed Processors Allocation. Disc. App. Math., 55:259–272, (1994)Google Scholar
  14. 14.
    C. Kenyon, E. Rémila. Approximate Strip-Packing. Proceedings of the 37th Symposium on Foundations of Computer Science (FOGS), 31–36, (1996)Google Scholar
  15. 15.
    D. E. Knuth. The Art of Computer Programming, Vol.1: Fundamental Algorithms. Addison-Wesley, Reading, MA, (1968)Google Scholar
  16. 16.
    A. Krämer. Scheduling Multiprocessor Tasks on Dedicated Processors. PhD Thesis, Fachbereich Mathematik/Informatik, Universität Osnabrück, (1995)Google Scholar
  17. 17.
    H. Krawczyk, and M. Kubale. An approximation algorithm for diagnostic test scheduling in multicomputer systems. IEEE Trans. Comput., C-34(9):869–872, (1985)Google Scholar
  18. 18.
    M. Kubale. Preemptive Scheduling of Two-Processor Tasks on Dedicated Processors (in polish). Zeszyty Naukowe Politechniki Ślaskiej, Seria: Automatyka z.100, 1082:145–153, (1990)Google Scholar
  19. 19.
    H. W. Lenstra Integer Programming with a Fixed Number of Variables. Math. Oper. Res., 8:538–548, (1983)Google Scholar
  20. 20.
    B. Veltman, B. J. Lageweg, and J. K. Lenstra. Multiprocessor Scheduling with Communication Delays. Parallel Computing, 16:173–182, (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • A. K. Amoura
    • 1
  • E. Bampis
    • 2
  • C. Kenyon
    • 3
  • Y. Manoussakis
    • 1
  1. 1.Université Paris SudOrsay CedexFrance
  2. 2.Université d'EvryEvry CedexFrance
  3. 3.ENS Lyon, LIP, URA CNRS 1398Lyon Cedex 07France

Personalised recommendations