Looking for an analogue of Rice's Theorem in circuit complexity theory

  • Bernd Borchert
  • Frank Stephan
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1289)


Rice's Theorem says that every nontrivial semantic property of programs is undecidable. It this spirit we show the following: Every nontrivial absolute (gap, relative) counting property of circuits is UP-hard with respect to polynomial-time Turing reductions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Agrawal, T. Thierauf. The Boolean isomorphism problem, 37th Symposium on Foundations of Computer Science (FOCS, 1996, 422–430.Google Scholar
  2. 2.
    R. Beigel. A structural theorem that depends quantitatively on the complexity of SAT, Proc. 2th Annual IEEE Conference on Computational Complexity, 1987, 28–32.Google Scholar
  3. 3.
    R. Beigel. NP-hard sets are P-superterse unless R = NP, Technical Report 88-04, John Hopkins University, Baltimore, 1988.Google Scholar
  4. 4.
    R. Beigel, M. Kummer, F. Stephan. Approximable Sets, Information and Computation, 120, 1995, 304–314.Google Scholar
  5. 5.
    B. Borchert, A. Lozano. Succinct circuit representations and leaf language classes are basically the same concept, Information Processing Letters 58, 1996, 211–215.Google Scholar
  6. 6.
    B. Borchert, D. Ranjan, F. Stephan. The Computational Complexity of some Classical Equivalence Relations on Boolean Functions, ECCC Report TR96-033, 1996.Google Scholar
  7. 7.
    J. Case. Effectivizing Inseparability, Zeitschrift für Mathematische Logik and Grundlagen der Mathematik (Mathematical Logic Quarterly) 37, 1991, 97–111.Google Scholar
  8. 8.
    S. A. Cook. The complexity of theorem proving procedures, Proc. 3rd Annual ACM Symposium on the Theory of Computing (STOC), 1971, 151–158.Google Scholar
  9. 9.
    M. R. Fellows, N. Koblitz. Self-witnessing polynomial-time complexity and prime factorization, Proc. 7th Annual IEEE Conference on Computational Complexity, 1992, 107–110Google Scholar
  10. 10.
    S. A. Fenner, L. J. Fortnow, S. A. Kurtz. Gap-definable counting Classes, Journal of Computer and Systems Sciences 48, 1994, 116–148.Google Scholar
  11. 11.
    J. Grollmann, A. Selman. Complexity measures for public-key cryptosystems, SIAM Journal on Computing 17, 309–335Google Scholar
  12. 12.
    T. Gundermann, N. A. Nasser, G. Wechsung. A survey on counting classes, Proc. 5th Annual IEEE Conference on Computational Complexity, 1990, 140–153.Google Scholar
  13. 13.
    S. Gupta. The power of witness reduction, Proc. 6th Annual IEEE Conference on Computational Complexity, 1991, 43–59Google Scholar
  14. 14.
    Dexter Kozen. Indexings of subrecursive classes, Theoretical Computer Science 11, 1980, 277–301.Google Scholar
  15. 15.
    M. Ogiwara, L. A. Hemachandra. A complexity theory of feasible closure properties, Proc. 6th Annual IEEE Conference on Computational Complexity, 1991, 16–29Google Scholar
  16. 16.
    Ch. Papadimitriou. Computational Complexity, Addison Wesley, 1994.Google Scholar
  17. 17.
    H. G. Rice. Classes of recursively enumerable sets and their decision problems, Trans. Amer. Math. Sec. 74, 1953, 358–366.Google Scholar
  18. 18.
    H. G. Rice. On completely recursively enumerable classes and their key arrays, J. Symbolic Logic 21, 1956, 304–341.Google Scholar
  19. 19.
    J. Royer. A Connotational Theory of Program Structure. Springer LNCS 273, 1987.Google Scholar
  20. 20.
    U. Schöning. On Small Generators, Theoretical Computer Science 34, 1984, 337–341.Google Scholar
  21. 21.
    L. G. Valiant. The relative complexity of checking and evaluating, Information Processing Letters 5, 1976, 20–23Google Scholar
  22. 22.
    L. G. Valiant, V. V. Vazirani. NP is as easy as detecting unique solutions, Theoretical Computer Science 47, 1986, 85–93.Google Scholar
  23. 23.
    H. Veith. Succinct representations, leaf languages and projection reductions, Proc. 11th Annual IEEE Conference on Computational Complexity, 1996, 118–126.Google Scholar
  24. 24.
    C. K. Yap. Some consequences of non-uniform conditions on uniform classes, Theoretical Computer Science 27, 1983, 287–300.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Bernd Borchert
    • 1
  • Frank Stephan
    • 2
  1. 1.Mathematisches InstitutUniversität HeidelbergHeidelbergGermany
  2. 2.Mathematisches InstitutUniversität HeidelbergHeidelbergGermany

Personalised recommendations