Advertisement

A formal framework for the analysis of recursive-parallel programs

  • O. Kushnarenko
  • Ph. Schnoebelen
Theory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1277)

Abstract

RP programs are imperative programs with parallelism and recursion and only a limited way of synchronizing parallel processes. The formal framework we propose here combines (1) a formal operational model of abstract programs (or RP schemes), (2) a set of decision methods for the analysis of RP schemes, (3) a formal operational model for the interpreted programs, and (4) translation results stating how some behavioural properties of the concrete programs can be correctly checked on the corresponding scheme.

Keywords

semantics of concurrency automated verification of programs infinite state systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BCM+92]
    J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model checking: 1020 states and beyond. Information and Computation, 98(2):142–170, June 1992.Google Scholar
  2. [BK89]
    J. A. Bergstra and J. W. Klop. Process theory based on bisimulation semantics. In Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency, Noordwijkerhout, LNCS 354, pages 50–122. Springer-Verlag, 1989.Google Scholar
  3. [BW90]
    J. C. M. Baeten and W. P. Weijland. Process Algebra, volume 18 of Cambridge Tracts in Theoretical Computer Science. Cambridge Univ. Press, 1990.Google Scholar
  4. [Esp96]
    J. Esparza. More infinite results. In Proc. Int. Workshop Verification of Infinite State Systems, Pisa, pages 4–20, August 1996.Google Scholar
  5. [Kou97]
    O. Kouchnarenko. Sémantique des programmes récursifs-parallèles et méthodes pour leur analyse. Thèse de Doctorat, Univ. Joseph Fourier-Grenoble I, France, February 1997.Google Scholar
  6. [Kru60]
    J. B. Kruskal. Well-quasi-ordering, the Tree Theorem, and Vazsonyi's conjecture. Trans. Amer. Math. Soc., 95:210–225, 1960.Google Scholar
  7. [KS96a]
    O. Kouchnarenko and Ph. Schnoebelen. A model for recursive-parallel programs. In Proc. Int. Workshop Verification of Infinite State Systems, Pisa, pages 127–138, August 1996.Google Scholar
  8. [KS96b]
    O. Kouchnarenko and Ph. Schnoebelen.Modèles formels pour les programmes récursifs-parallèles. In Proc. RENPAR'8, Bordeaux, pages 85–88, May 1996.Google Scholar
  9. [Mol96]
    F. Moller. Infinite results. In Proc. CONCUR'96, Pisa, Italy, LNCS 1119, pages 195–216. Springer-Verlag, August 1996.Google Scholar
  10. [MVVK88]
    Y. Mamatov, V. Vasilchikov, S. Volchenkov, and V. Kurchidis. Multiprocessor computer system with dynamic parallelism. Technical Report 7160, VINITI, Moscow, Russia, September 1988.Google Scholar
  11. [Sch96]
    Ph. Schnoebelen. On the analysis of RP schemes. Unpublished notes, November 1996.Google Scholar
  12. [VEKM94]
    V. Vasilchikov, V. Emielyn, V. Kurchidis, and Y. Mamatov. Recursive-parallel programming and work in RPMSHELL. IPVT RAN, Iaroslavl, Russia, 1994.Google Scholar
  13. [Wal88]
    D. J. Walker. Bisimulations and divergence. In Proc. 3rd IEEE Symp. Logic in Computer Science, Edinburgh, July 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • O. Kushnarenko
    • 1
  • Ph. Schnoebelen
    • 2
  1. 1.IRISAUniv. Rennes IRennes CedexFrance
  2. 2.ENS de Cachan & CNRS URA 2236Lab. Spécification & VérificationCachan CedexFrance

Personalised recommendations