Advertisement

Voronoi diagrams for polygon-offset distance functions

  • Gill Barequet
  • Matthew T. Dickerson
  • Michael T. Goodrich
Session 7AB: Invited Lecture
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1272)

Abstract

In this paper we develop the concept of a polygon-offset distance function and show how to compute the respective nearest- and furthest-site Voronoi diagrams of point sites in the plane. We provide optimal deterministic O(n(log n + log m) + m)-time algorithms, where n is the number of points and m is the complexity of the underlying polygon, for computing compact representations of both diagrams.

Keywords

Voronoi diagrams medial axis distance function offset convexity geometric tolerancing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AA]
    O. Aichholzer and F. Aurenhammer, Straight skeletons for general polygonal figures in the plane, Proc. 2nd COCOON, 1996, 117–126, LNCS 1090, Springer Verlag.Google Scholar
  2. [AAAG]
    O. Aichholzer, D. Alberts, F. Aurenhammer, and B. Gärtner, A novel type of skeleton for polygons, J. of Universal Computer Science (an electronic journal), 1 (1995), 752–761Google Scholar
  3. [BBDG]
    G. Barequet, A. Briggs, M. Dickerson, and M.T. Goodrich, Offset-polygon annulus placement problems, these proceedings, 1997.Google Scholar
  4. [CD]
    L.P. Chew and R.L. Drysdale, Voronoi diagrams based on convex distance functions, Technical Report PCS-TR86-132, Dept. of Computer Science, Dartmouth College, Hanover, NH 03755, 1986; Short version: Proc. 1st Symp. on Comp. Geom., 1985, 324–244.Google Scholar
  5. [Fo]
    S. Fortune, A sweepline algorithm for Voronoi diagrams, Algorithmica, 2 (1987), 153–174.Google Scholar
  6. [KN]
    J.L. Kelley and I. Namioka, Linear Topological Spaces, Springer Verlag, 1976.Google Scholar
  7. [KS]
    D. Kirkpatrick and J. Snoeyink, Tentative prune-and-search for computing fixed-points with applications to geometric computation, Fund. Informaticæ, 22 (1995), 353–370.Google Scholar
  8. [KI]
    R. Klein, Concrete and abstract Voronoi diagrams, LNCS 400, Springer Verlag, 1989.Google Scholar
  9. [KMM]
    R. Klein, K. Mehlhorn, and S. Meiser, Randomized incremental construction of abstract Voronoi diagrams, Comp. Geometry: Theory and Applications, 3 (1993), 157–184.Google Scholar
  10. [KW]
    R. Klein and D. Wood, Voronoi diagrams based on general metrics in the plane, Proc. 5th Symp. on Theoret. Aspects in Comp. Sci., 1988, 281–291, LNCS 294, Springer Verlag.Google Scholar
  11. [MKS]
    M. McAllister, D. Kirkpatrick, and J. Snoeyink, A compact piecewise-linear Voronoi diagram for convex sites in the plane, D&CG, 15 (1996), 73–105.Google Scholar
  12. [MMO]
    K. Mehlhorn, S. Meiser, and Ó'Dúlaing, On the construction of abstract Voronoi diagrams, Discrete & Computational Geometry, 6 (1991), 211–224.Google Scholar
  13. [MMR]
    K. Mehlhorn, S. Meiser, and R. Rasch, Furthest site abstract Voronoi diagrams, Technical Report MPI-I-92-135, Max-Planck-Institut für Informatik, Saarbrücken, Germany. 1991Google Scholar
  14. [Ra]
    D. Rappaport, Computing the furthest site Voronoi diagram for a set of disks, Proc. ist Workshop on Algorithms and Data Structures, LNCS, 382, Springer Verlag, 1989, 57–66.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Gill Barequet
    • 1
  • Matthew T. Dickerson
    • 2
  • Michael T. Goodrich
    • 1
  1. 1.Center for Geometric Computing, Dept. of Computer ScienceJohns Hopkins UniversityBaltimore
  2. 2.Department of Mathematics and Computer ScienceMiddlebury CollegeMiddlebury

Personalised recommendations